О нестабильных центрах окраски в редкоземельных галлиевых гранатах

# В.Г. Костишин

#### Введение

Перспективным классом материалов современной твердотельной электроники [1] являются редкоземельные галлиевые гранаты (РЗГГ). Монокристаллы РЗГГ используются в настоящее время в качестве высокоэффективных лазерных матриц [2-4], находят широкое применение как подложки для нанесения магнитных пленок при создании устройств магнитооптики и СВЧ-микроэлектроники [5, 6], применяются также в акустооптике [7], интегральной оптике [8] и ряде других областей.

Галлиевые гранаты привлекают внимание тем, что они обладают большей по сравнению с другими гранатами изоморфной емкостью и дают возможность в широких пределах изменять химический состав, позволяя тем самым подбирать требуемые для практического применения физические свойства кристаллов.

#### Объекты и методики экспериментальных исследований

Ввиду специфики практического применения РЗГГ, важной исследовательской задачей является изучение центров окраски (ЦО) в данных кристаллах. Целью настоящей работы было исследование в диапазоне длин волн 0,2 - 0,87 мкм и выяснение природы ЦО, возникающих в РЗГГ Gd<sub>3</sub>Ga<sub>5</sub>O<sub>12</sub> (ГГГ), Gd<sub>3</sub>Sc<sub>1,6</sub>Ga<sub>3,4</sub>O<sub>12</sub> (ГСГГ) и Nd<sub>3</sub>Ga<sub>5</sub>O<sub>12</sub> (НГГ) при их выдержке в темноте.

Исследуемые кристаллы были выращены по методу Чохральского из сырья марки ОСЧ. Образцы для исследований представляли собой прямоугольники размером 15х15 мм и толщиной 0,3 – 0,7 мм, вырезанные из

булей монокристаллов вышеуказанных составов в плоскости (111). Оптические спектры пропускания регистрировались на спектрофотометре "Specord M-40". Содержание неконтролируемой примеси в кристаллах определялось с помощью качественного спектрального анализа на спектрометре «Минилаб СЛ». Дополнительное поглощение (ДП) кристаллов определялось по формуле:

$$\Delta \alpha = (l/d) \cdot ln(T_1/T_2), \tag{1}$$

где:  $T_1$  – оптическое пропускание образца в исходном состоянии;  $T_2$  - оптическое пропускание образца после его облучения (выдержки в темноте); d – толщина образца.

Концентрация образованных центров окраски рассчитывалась по формуле Смакулы-Декстора:

$$N = 0.87 \cdot 10^{17} \cdot (n/(n^2 + 2)^2) \cdot (1/f) \cdot \alpha_{max} \cdot \Delta E,$$
(2)

где: n – показатель преломления на длине волны, соответствующей максимуму поглощения; f – сила осциллятора;  $\alpha_{max}$  – коэффициент поглощения в максимуме полосы поглощения, см<sup>-1</sup>;  $\Delta E$  – ширина полосы поглощения на половине ее высоты, эВ.

## Результаты эксперимента и их обсуждение

При выдержке объектов исследования в темноте (время выдержки составляло от одних до 30 суток) для кристаллов НГГ никаких изменений обнаружено не было. В то же время, для кристаллов ГГГ и ГСГГ уже при выдержке в темноте в течение 2 – 5 суток на их спектрах пропускания удавалось обнаружить два интенсивных пика дополнительного облучения (ДП) (см. рис. 1) с максимумами в районе 0,243 мкм и 0,275 мкм.



Рис. 1 – ДП в кристаллах ГГГ (F и D ) и ГСГГ (В и Н), обусловленное нестабильными ЦО, образующимися в темноте

Интенсивности пиков – практически одинаковы, что говорит о равной концентрации соответствующих им центров. Обнаруженные ЦО оказались термически нестойкими и нефотостойкими и гибли под воздействием температуры 80-100 °C в течение 15 – 20 мин, а под воздействием излучения видимого или инфракрасного диапазона в течение 30 – 60 минут.

Следует отметить, что наряду с проявлением в кристаллах ГГГ и ГСГГ при выдержке в темноте нестабильных ЦО, наблюдалось также незначительное (~ 0,1 нм) смещение края фундаментального поглощения в сторону больших значений длин волн.

Перейдем к анализу ЦО, возникающих в кристаллах ГГГ и ГСГГ при их выдержке в темноте. В литературе полосу поглощения в области 0,260 мкм приписывают либо ионам Fe<sup>3+</sup> [9, 10], либо электронному центру, связанному с анионной вакансией (типа F-центра) [11]. С другой стороны, короткоживущее ДП, стабильное при хранении образцов в темноте и гибнущее под воздействием видимого и ИК-света, - характерно для центров окраски дырочной природы [12].

По данным проведенного качественного спектрального анализа (см. таблицу 1), приписывать обнаруженные в настоящей работе центры ионам  $Fe^{3+}$  нет оснований. Ошибкой было бы приписывать проявленные нестабильные ЦО неконтролируемой примеси (по данным таблицы: Al, Ni, Si), поскольку концентрация каждого из элементов примеси не превышает  $10^{16} - 10^{17}$  см<sup>-3</sup>, в то время, как концентрация обнаруженных ЦО в этих же кристаллах, рассчитанная по коэффициенту  $\alpha$  в соответствии с формулой (2), составила  $10^{18}$  см<sup>-3</sup>.

Известно, что выращивание кристаллов галлийсодержащих гранатов методом Чохральского сопровождается потерей оксида галлия [13], что, несомненно, приводит к образованию вакансий по галлию  $V^{3-}_{Ga3+}$ . Являясь электроотрицательными по отношению к кристаллической решетке, вакансии галлия для соблюдения электронейтральности кристалла будут стимулировать образование положительно заряженных кислородных вакансий и, таким образом, приведут к формированию комплексов [ $V^{3-}_{Ga3+}$  -  $V^{2+}_{O2-}$ ]. Уравнение электронейтральности кристалла при этом буде иметь следующий вид:

$$n + N_1 V^{3}_{Ga3+} = p + N_2 V^{2+}_{O2-} + N_3 V^{+}_{O2-},$$
(3)

где: n – концентрация электронов в кристалле;  $N_1$  – концентрация вакансий галлия  $V^{3-}_{Ga3+}$ ; p - концентрация дырок;  $N_2$  – концентрация двухзарядных кислородных вакансий  $V^{2+}_{O2-}$ ;  $N_3$  – концентрация однозарядных кислородных вакансий  $V^{+}_{O2-}$  (F<sup>+</sup> - центр).

Таблица № 1

Результаты качественного спектрального анализа исследуемых кристаллов

ГГГ и ГСГГ

| №<br>п/п | Химический<br>состав<br>кристаллов | Содержание элементов, атомные % |    |    |    |    |    |    |    |    |
|----------|------------------------------------|---------------------------------|----|----|----|----|----|----|----|----|
|          |                                    | Gd                              | Nd | Ga | Sc | Cr | Si | Al | Cu | Ni |

| 1 | Gd <sub>3</sub> Ga <sub>5</sub> O <sub>12</sub>                     | основа | _      | основа | -      | десяти<br>тысяч<br>ные | тыс<br>ячн<br>ые | тыся<br>чные               | десят<br>итыс<br>ячны<br>е | тыся<br>чные<br>и<br>боль<br>ше |
|---|---------------------------------------------------------------------|--------|--------|--------|--------|------------------------|------------------|----------------------------|----------------------------|---------------------------------|
| 2 | Gd <sub>3</sub> Sc <sub>1,6</sub> Ga <sub>3,4</sub> O <sub>12</sub> | основа | -      | основа | основа | -                      | тыс<br>ячн<br>ые | мень<br>ше<br>тыся<br>чных | -                          | тыся<br>чные                    |
| 3 | Nd <sub>3</sub> Ga <sub>5</sub> O <sub>12</sub>                     | -      | основа | основа | следы  |                        | тыс<br>ячн<br>ые | _                          | мень<br>ше<br>тыся<br>чных | -                               |

Нельзя связывать обнаруженное ДП и с кислородными вакансиями  $V_{O2-}^0$ ,  $V_{O2-}^+$  и  $V_{O2-}^{2+}$ , поскольку кратковременная (15 – 20 мин) низкотемпературная (80 – 100 ° C) обработка как в вакууме, так и на воздухе приводит к уничтожению обоих типов центров. Кроме того, из результатов [13-17] видно, что кислородные вакансии в галлиевых гранатах не создают пиков ДП с максимумами в области 0,243 мкм и 0,275 мкм. Двухкратную ионизацию нейтральной кислородной вакансии  $V_{O2-}^0$  (F-центр) в галлиевых гранатах следует связывать с широкой полосой ДП с  $\lambda_{max} = 0,345$  мкм, а ионизацию однозарядной вакансии кислорода  $V_{O2-}^+$  (F<sup>+</sup> -центр) – с полосой ДП с  $\lambda_{max} = 0,417$  мкм [14-19].

Для полной зарядовой компенсации одной вакансии галлия в кристаллической решетке галлиевого граната требуется образование в первой координационной сфере дефектов с суммарным зарядом «3+», например, одной двухзарядной кислородной вакансии  $V^{2+}_{O2-}$  и одной однозарядной  $V^{+}_{O2-}$  (F<sup>+</sup> -центр). Комплекс [ $V^{3-}_{Ga3+} - V^{2+}_{O2-}$ ], «перетягивая» в сторону вакансии  $V^{2+}_{O2-}$  один из внешних электронов близлежащего иона кислорода, формирует в 2р-зоне последнего подвижную дырку (центр O<sup>-</sup>).

Таким образом, предполагается, что обнаруженные ЦО с  $\lambda_{max1} = 0,243$  мкм и  $\lambda_{max2} = 0,275$  мкм соответствуют дырочным центрам О<sup>-</sup>, находящимся вблизи комплексов [V<sup>3-</sup><sub>Ga3+</sub> - V<sup>2+</sup><sub>O2-</sub>]. На рис. 2 и рис. 3 представлены схемы образования дырочного центра О<sup>-</sup> вблизи комплекса [V<sup>3-</sup><sub>Ga3+</sub> - V<sup>2+</sup><sub>O2-</sub>] для

тетраэдрической (рис. 2) и октаэдрической (рис. 3) вакансии галлия V<sup>3-</sup>Ga3+.

Наличие двух пиков объясняется наличием разного окружения дырочных центров O<sup>-</sup>. Можно предположить, что низкоэнергетичному пику (  $\lambda_{max} = 0,275$  мкм ) соответствует дырочный центр O<sup>-</sup>, связанный с вакансией галлия  $V^{3-}_{Ga3+}$  в октаэдрическом узле кристаллической решетки, а высокоэнергетичному пику (  $\lambda_{max} = 0,243$  мкм ) соответствует дырочный центр O<sup>-</sup>, связанный с вакансией галлия  $V^{3-}_{Ga3+}$  в тетраэдрическом узле кристаллической решетки.

Следует отметить, что обнаруженные нестабильные дырочные центры с  $\lambda_{max1} = 0,243$  мкм и  $\lambda_{max2} = 0,275$  мкм, несомненно, существуют и в кристаллах НГГ, однако в последних они не были обнаружены с помощью оптической спектрофотометрии, поскольку «забиваются» положением края фундаментального поглощения, который находится в видимой части спектра.



О<sup>2-</sup> - ион кислорода в кристаллической решетке РЗГГ;

- двухзарядная кислородная вакансия в кристаллической решетке РЗГГ;







- ион Gd<sup>3+</sup> в додекаэдрическом узле кристаллической решетки

РЗГГ;

Ga<sup>3+</sup>(a) - ион Ga<sup>3+</sup> в октаэдрическом узле кристаллической решетки РЗГГ;  $V_{Ga^{3+}}^{3-}(d)$ 

I = I - вакансия иона Ga<sup>3+</sup> (V<sup>3-</sup><sub>Ga3+</sub>) в тетраэдрическом узле кристаллической решетке РЗГГ;

 $V_{Ga^{3+}}^{3-}(a)$  - вакансия иона Ga<sup>3+</sup> ( V<sup>3-</sup><sub>Ga3+</sub> ) в октаэдрическом узле кристаллической решетке РЗГГ.

Рис. 2 – Схематическое изображение формирования ответственного за нестабильное дополнительное поглощение ( λ<sub>max</sub> = 0,243 мкм ) в РЗГГ дырочного центра O<sup>-</sup> вблизи тетраэдрической вакансии галлия V<sup>3-</sup><sub>Ga3+</sub>. а) «перетягивание» на себя кислородной вакансией от близлежащего иона кислорода O<sup>2-</sup> электрона e<sup>-</sup>; б) сформированный нестабильный дырочный центр O<sup>-</sup>



Рис. 3 – Схематическое изображение формирования ответственного за нестабильное дополнительное поглощение (  $\lambda_{max} = 0,275$  мкм ) в РЗГГ дырочного центра О<sup>-</sup> вблизи октаэдрической вакансии галлия V<sup>3-</sup>Ga<sup>3+</sup>. а) «перетягивание» на себя кислородной вакансией от близлежащего иона кислорода О<sup>2-</sup> электрона е<sup>-</sup>; б) сформированный нестабильный дырочный центр О<sup>-</sup>

### Заключение

В работе методами оптической спектрофотометрии и спектрального анализа изучено изменение оптических свойств выращенных по методу Чохральского монокристаллов  $Gd_3Ga_5O_{12}$ ,  $Gd_3Sc_{1,6}Ga_{3,4}O_{12}$  и  $Nd_3Ga_5O_{12}$  при их выдержке в темноте. В результате исследований впервые обнаружено:

При выдержке в темноте в кристаллах ГГГ и ГСГГ образуются нестабильные ЦО с  $\lambda_{max1} = 0,243$  мкм и  $\lambda_{max2} = 0,275$  мкм и концентрацией N ~  $10^{18}$  см<sup>-3</sup>. Предполагается, что обнаруженные ЦО соответствуют дырочным центрам О<sup>-</sup>, связанным с вакансиями галлия V<sup>3-</sup><sub>Ga3+</sub> в тетраэдрических и октаэдрических узлах кристаллической решетки, соответственно, и образующимся вблизи комплексов [V<sup>3-</sup><sub>Ga3+</sub> - V<sup>2+</sup><sub>O2-</sub>].

Работа выполнена в рамках проекта «Разработка нового класса наноразмерных материалов на основе пленочных магнитных электретов и мультиферроиков для сверхплотной магнитной и магнитооптической записи информации» (ГОСУДАРСТВЕННЫЙ КОНТРАКТ № 11.519.11.4026, тема №7219202)

## Литература:

1. Борискин В.С., Гулякович Г.Н., Северцев В.Н. Организация мелкосерийного производства микросхем [Электронный pecypc] N⁰ 2. «Инженерный вестник Дона», 2012, \_ Режим доступа: http://ivdon.ru/magazine/archive/n2y2012/789 (доступ свободный) – Загл. с экрана. – Яз. рус.

2. Жариков Е.В., Ильичев Н.Н., Лаптев В.В. и др. [Текст] // Квантовая электроника, 1982. – №9, – С.568-572.

3. Жариков Е.В., Ильичев Н.Н., Лаптев В.В. и др. [Текст] // Квантовая электроника, 1983. – №10, –С.140-144.

 4. Жариков Е.В., Ильичев Н.Н., Калитин С.П. и др. [Текст] // Препринт ФИАН, 1983. – № 20, –С.26-30. 5. Brandle C.D. [Текст] // J. Appl. Phys, 1978. – №49, –Р.1855-1858.

6. Mateika D., Laurien R., Rusche Ch. [Текст] // J. Cryst. Growth, 1982. – V.56, –P.677-682.

7. Блистанов А.А. Акустические кристаллы [Текст]: Справочник под ред. М.П. Шаскольской / А.А. Блистанов. – М.: Наука. Главная редакция физико-математической литературы, 1982. - 632 с.

8. Tien P.K., Martin R.J., Blank S.L. [Текст] // J.Appl. Phys. Lett, 1972. – V.21, – P.207-213.

9. Scott G.B., Page J.L. [Текст] // Phys. Stat. Sol. (b), 1977. – V.79. – Р. 203-209.

10. Lacklison D.E., Scott G.B., Page J.L. [Текст] // Solid State Comms, 1974. – V.14, – P.861-866.

11. Arsenev P.A., Binert K.E., Francke R., Kustov E.E., Linda J.G. [Текст] // Phys. Stat. Sol. (a), 1973. –V.15, – P.71-78.

12. Ковалев Н.С., Иванов А.О., Дубровина Э.П. [Текст] // Квантовая электроника, 1981. – Т.8, – № 11, –С.2433-2438.

13. Жариков Е.В. [Текст] // Труды ИОФАН, 1990. – Т.26, – С.50-78.

14. Костишин В.Г., Летюк Л.М., Бугакова О.Е., Сендерзон Е.Р. [Текст] // Неорганические материалы, 1997. – Т.33, – № 7, – С. 853-857.

15. Kostishyn V.G., Shevchuk V.N., Bugakova O.E. [Текст] // Book of Abstracts International Scientific Workshop "Oxide Materials for Electronic Engineering-fabrication, properties and application (OMEE-2009)", 2009. – Lviv, – Ukraine, – P.135.

16. Kostishyn V.G., Kozhitov L.V., Shevchuk V.N., Bugakova O.E. [Текст] // Book of Abstracts 5<sup>th</sup> EEIGM International Conference on Advanced Materials Research, EEIGM Nancy-France, November 4-5 2009. – Р. 65.

17. Kostishyn V.G., Kozhitov L.V., Shevchuk V.N., Bugakova O.E. [Текст] // Book of Abstracts EURODIM 2010. 11th Europhysical Conference on Defects in Insulating Materials PECS, Hungary, 12-16 July 2010. – Р. B63.

18. Костишин В.Г. Радиационно-стимулированные и

короноэлектретные изменения структуры и свойств феррогранатовых гетерокомпозиций [Текст]: Автореферат диссертации на соискание ученой степени доктора физико-математических наук. – М. МИСиС, 2009. – 48 с.

19. Костишин В.Г., Читанов Д.Н., Булатов М.В., Сыворотка И.И., Сыворотка И.М. Термоактивационная токовая спектроскопия электрически активных центров В эпитаксиальных монокристаллических пленках  $(TmBi)_{3}(FeGa)_{5}O_{12}:Ca^{2+}$ [Электронный ферритов-гранатов pecypc] // «Инженерный вестник Дона», 2012, № 4 (часть 2). – Режим доступа: http://ivdon.ru/magazine/archive/n4p2y2012/1403 (доступ свободный) – Загл. с экрана. – Яз. рус.