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Аннотация: Стремительная электрификация транспорта и энергетики предъявляет 
экстремальные и зачастую противоречивые требования к характеристикам литий-ионных 
аккумуляторов. Классическая парадигма пошаговой оптимизации отдельных компонентов 
(материалов, конструкции) достигла предела своей эффективности, сталкиваясь с 
проблемой негативных синергетических эффектов. Несмотря на обилие продвинутых 
методов – от детальных физико-химических моделей до алгоритмов машинного обучения 
– область проектирования систем накопления энергии остается фрагментированной. В 
данной статье проводится критический анализ трех изолированных доменов: эмпирико-
синтетического подхода, физико-математического моделирования и программных 
методов. Выявлены системные недостатки: отсутствие сквозных методологий, проблема 
«черного ящика» у решений на основе машинного обучения, экстремальные требования к 
данным и вычислительным ресурсам, а также ограниченная переносимость решений. 
Предлагается концепция гибридной прогностической платформы, целенаправленно 
интегрирующей быстрые регрессионные модели для детерминированных параметров и 
специализированные нейронные сети для прогнозирования сложных нелинейных 
процессов деградации. Такая интеграция позволяет рассматривать аккумуляторную 
ячейку как единый объект, оптимизируя компромиссы между ключевыми 
характеристиками (емкость, мощность, срок службы, безопасность) на этапе виртуального 
проектирования, что ведет к сокращению времени и стоимости работ. 
Ключевые слова: системы накопления энергии, системный подход, материалы 
электродов, оптимизация, системное проектирование, машинное обучение, гибридные 
модели, прогнозирование деградации, оптимизация характеристик. 
  

Введение 

Литий-ионные аккумуляторы (ЛИА) стали ключевой технологией для 

энергетического перехода, являясь основой для электромобилей и систем 

хранения энергии. Растущий спрос диктует необходимость одновременного 

улучшения комплекса характеристик: удельной энергии, мощности, срока 

службы, безопасности и снижения стоимости [1, 2]. Традиционный подход, 

фокусирующийся на поиске «идеального материала», показал свою 

ограниченность. Улучшение одного параметра зачастую приводит к 

неконтролируемому ухудшению других из-за сложных межкомпонентных 

взаимодействий в электрохимической системе [3, 4]. 
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Проектирование ЛИА — задача, находящаяся на стыке электрохимии, 

материаловедения, механики и теплофизики. Несмотря на наличие мощных 

инструментов в каждой из этих областей, их развитие шло изолированно. В 

результате современный ландшафт решений представляет собой 

совокупность высокоспециализированных, но разрозненных методов, 

неспособных обеспечить сквозное прогнозирование характеристик ячейки «с 

нуля» на основе заданных параметров материалов, конструкции и 

эксплуатации. При этом, даже обладая передовыми методами моделирования 

и анализа, индустрия по-прежнему в значительной степени полагается на 

ресурсоемкий эмпирический перебор. Цель данной работы — провести 

системный анализ ограничений современных подходов к проектированию 

литий-ионных аккумуляторов и обосновать необходимость разработки 

интегральных гибридных методологий, способных преодолеть разрыв между 

изолированными доменами знаний. 

Критический анализ существующих подходов 

Современная методология разработки литий-ионных аккумуляторов 

характеризуется существованием трёх доминирующих, но методологически 

изолированных парадигм, каждая из которых вносит существенный вклад, но 

не обеспечивает комплексного решения задачи сквозного проектирования. 

Во-первых, доминирующий в промышленных научно-

исследовательских и опытно-конструкторских работах эмпирико-

синтетический подход концентрируется на целевой модификации и 

оптимизации отдельных компонентов ячейки, таких как высокоёмкие 

катодные материалы (например, никель-обогащённые составы), аноды на 

основе кремния [4] или сложные композиции электролитов [5, 6]. Его 

неоспоримым достоинством является прямая связь с фундаментальной 

электрохимией и потенциал для совершения прорывных открытий на уровне 

новых соединений. Однако данный подход принципиально ограничен 
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игнорированием системных взаимодействий. Выдающиеся свойства 

материала, полученные в условиях модельных ячеек, зачастую не релевантны 

в контексте полноценной системы, где критическую роль играют межфазные 

процессы, такие как формирование твёрдых электролитных плёнок, и 

кинетические ограничения, обусловленные конструкцией [7]. Это приводит к 

фрагментарности знаний и необходимости чрезвычайно ресурсоёмкого 

итеративного процесса «синтез-тестирование», что становится основным 

барьером для ускорения разработки. 

Во-вторых, подход, основанный на физико-химическом 

моделировании, предлагает фундаментальную альтернативу через 

построение детальных математических описаний внутренних процессов. 

Классической и наиболее широко применяемой является псевдодвумерная 

(Pseudo-Two-Dimensional - P2D) модель Дойла-Фуллера-Ньюмана, 

описывающая перенос массы и заряда в пористых электродах. Сила таких 

моделей заключается в их высокой предсказательной способности и 

возможности анализа пространственного распределения ключевых 

параметров, таких как концентрация лития или перенапряжение. Тем не 

менее, их практическое применение для задач проектирования сдерживается 

рядом непреодолимых ограничений. Вычислительная сложность решения 

систем нелинейных дифференциальных уравнений в частных производных 

делает модели непригодными для скрининга даже нескольких десятков 

вариантов конструкции в разумные сроки [8]. Кроме того, они 

демонстрируют экстремальную параметрическую чувствительность. 

Интеграция механизмов деградации (механическое растрескивание, рост 

толщины твёрдых электролитных плёнок) ещё более усугубляет эти 

проблемы, увеличивая вычислительную стоимость и сложность калибровки 

до непрактичного уровня [9]. 
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В-третьих, подход на основе машинного обучения, быстро 

развивающийся в последнее десятилетие, стремится преодолеть ограничения 

первых двух путём выявления скрытых статистических закономерностей в 

данных. Это направление разделяется на две основные ветви: предсказание 

свойств материалов [10] и диагностика состояния готовых ячеек, включая 

оценку состояния здоровья (State Of Health - SOH) и прогноз остаточного 

ресурса (Remaining Useful Life - RUL) [11, 12]. Его основное преимущество 

— способность аппроксимировать сложные нелинейные зависимости, 

недоступные для аналитического описания, и обеспечивать высокую 

оперативность прогноза после завершения обучения. Ключевой проблемой 

является низкая интерпретируемость («чёрный ящик»), что затрудняет 

извлечение нового физического знания и снижает доверие со стороны 

инженеров-разработчиков. Далее, данные методы предъявляют жёсткие 

требования к объёму и качеству данных для обучения, создавая 

непреодолимый барьер для новых, недостаточно изученных химических 

систем [13]. Наконец, современные решения на основе машинного обучения 

(Machine Learning – ML) носят узкоспециализированный характер, 

эффективно решая либо задачи «снизу-вверх» (от материала), либо «сверху-

вниз» (от готового изделия), но не предлагая целостной методологии для 

сквозного проектирования «с нуля». 

Проведённый анализ выявляет не просто разрозненность инструментов, 

но глубокую методологическую фрагментацию всей областич. Отсутствие 

интеграционной методологии, способной связать фундаментальные свойства 

материалов, параметры конструкции, режимы эксплуатации и итоговые 

интегральные характеристики, является системным барьером, 

консервирующим зависимость от дорогостоящего эмпирического перебора и 

препятствующим достижению оптимальных компромиссов между 
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ключевыми показателями производительности аккумуляторной ячейки. 

Анализ существующих подходов приведён в таблице 1. 

Таблица № 1 

Анализ существующих подходов проектирования систем накопления энергии 

Критерий / 
Подход 

Эмпирико-
синтетический 

Физико-
химическое 

моделирование 

Машинное 
обучение 

Основной 
фокус 

Синтез и 
оптимизация 
отдельных 

компонентов (катод, 
анод, электролит). 

Детальное 
математическое 

описание 
внутренних 
процессов. 

Выявление 
статистических 

закономерностей 
и паттернов в 

данных. 
Ключевые 

инструмент
ы 

Химический синтез, 
электрохимическая 

характеризация, 
рентгеноструктурны

й анализ. 

Системы 
дифференциальны

х уравнений 
(модель P2D), 

вычислительная 
гидродинамика. 

Нейронные сети, 
методы 

ансамблевого 
обучения, 

регрессионный 
анализ. 

Сильные 
стороны 

Прямая связь с 
фундаментальной 

химией, 
возможность 
прорывных 
открытий. 

Высокая 
физическая 

обоснованность, 
возможность 

моделирования 
пространственных 

распределений 
параметров. 

Способность 
работать со 
сложными 

нелинейностями, 
высокая точность 
прогноза в рамках 

обучающей 
выборки. 

Слабые 
стороны 

Игнорирование 
системных 

взаимодействий, 
фрагментарность 
знаний, высокие 

затраты и 
длительные циклы 

тестирования. 

Экстремальная 
вычислительная 

сложность, 
параметрическая 

чувствительность, 
сложность 

моделирования 
деградации. 

Проблема 
«черного ящика», 

высокие 
требования к 

объему и качеству 
данных, плохая 

экстраполяционна
я способность, 

узкая 
специализация 

задач. 
Ключевая 
системная 
проблема 

Отсутствие 
интеграции 

Отсутствие 
масштабируемости 

Отсутствие 
сквозного охвата 
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Обоснование системного гибридного подхода: принципы и архитектура 

Для преодоления указанных ограничений необходим системный 

подход, рассматривающий аккумулятор как целостный объект, где входные 

параметры (материалы, конструкция, режимы) преобразуются в выходные 

характеристики (емкость, энергия, мощность, срок службы) через сеть 

взаимосвязанных физико-химических процессов. 

Ядром такого подхода должна стать гибридная прогностическая 

платформа, архитектура которой основана на ряде принципов. Во-первых, 

рассматривается иерархическое разделение задач. Мы можем выделить 

чёткое разделение прогнозируемых характеристик на две категории: 

1) Детерминированные, хорошо формализуемые параметры. К ним 

относятся начальная емкость, теоретическая энергия, омическое 

сопротивление. Для их прогнозирования используются быстрые 

регрессионные модели, основанные на фундаментальных законах и 

эмпирических корреляциях [14, 15]. Это обеспечивает скорость, 

прозрачность и низкие требования к данным; 

2) Сложные, нелинейные, зависимые от времени параметры. К ним 

относятся сохранение емкости при циклировании, состояние здоровья, а 

также остаточный ресурс. Для их прогнозирования применяются 

специализированные нейронные сети (например, сети долгой краткосрочной 

памяти (Long Short-Term Memory – LSTM) для учета временных 

последовательностей, а также гибридные архитектуры) [16, 17]. Это 

позволяет улавливать скрытые закономерности и синергетические эффекты 

деградации. 

Во-вторых, рассматривается интеграция через общее признаковое 

пространство. Выходные данные, полученные от регрессионных моделей 

(расчетные базовые характеристики), вместе с исходными входными 

параметрами формируют вектор признаков, который подаётся на вход 
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нейросетевого блока. Таким образом, нейросеть получает не «сырые» 

данные, а структурированную информацию, включающую как 

фундаментальные свойства системы, так и параметры эксплуатации. 

В-третьих, мы можем говорить о сквозном виртуальном цикле 

проектирования. Платформа работает как интерактивный симулятор. 

Исследователь задает целевые характеристики и ограничения, после чего 

система производит виртуальный скрининг возможных комбинаций 

«материал-конструкция-режим», оценивая не только мгновенные, но и 

долговременные показатели. Это позволяет осознанно идти на компромиссы 

(например, незначительное снижение емкости для многократного увеличения 

срока службы) [18]. 

К ожидаемым преимуществам гибридного подхода можно отнести: 

1) Сокращение времени и стоимости научно-исследовательских и 

опытно-конструкторских работ за счет уменьшения количества необходимых 

физических экспериментов; 

2) Ускорение вывода новых материалов и технологий на рынок; 

3) Улучшение качества и надежности проектирования благодаря 

комплексному учету взаимовлияний; 

4) Создание основы для обратного проектирования — поиска 

оптимальной конфигурации системы под заданные целевые характеристики. 

Заключение 

Проведенный анализ демонстрирует, что дальнейший прогресс в 

области литий-ионных аккумуляторов сдерживается не отсутствием 

инструментов, а отсутствием методологии их системной интеграции. 

Фрагментарность существующих решений является основным барьером для 

создания аккумуляторов следующего поколения с оптимальным балансом 

характеристик. 
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Предложенный системный гибридный подход, сочетающий 

прозрачность физических и регрессионных моделей с прогностической силой 

машинного обучения, представляет собой практический путь преодоления 

этого барьера. Его реализация в виде программных платформ откроет новую 

парадигму в проектировании сложных электрохимических систем, сделав 

процесс более быстрым, дешевым и управляемым. 

Перспективными направлениями развития данного подхода являются: 

1. Использование графовых нейронных сетей (Graph Neural Network - 

GNN) для более точного предсказания свойств материалов на основе их 

структуры. 

2. Интеграция обучения с подкреплением для оптимизации не только 

конструкции, но и адаптивных стратегий эксплуатации. 

3. Создание стандартизированных, аннотированных и публичных баз 

данных, специально предназначенных для обучения и валидации таких 

гибридных систем. 
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