Использование водородсодержащих топливных смесей для снижения выбросов парниковых газов

Р.В. Шарапов

Муромский институт (филиал) Владимирского государственного университета, Муром

Аннотация: Целью исследования является оценка экологической и экономической эффективности применения водородно-природных смесей в существующих топливных системах. Работа основана на стехиометрическом расчете объемов выбросов и сравнительном стоимостном анализе. Установлено, что линейная зависимость между долей водорода и снижением выбросов СО2 позволяет сократить их на 30% для смеси с 30% об. Н2. Объем выбросов водяного пара также снижается на 15%, что объясняется разницей в стехиометрии горения метана и водорода. В статье обоснована экономическая целесообразность технологии в случае использования дешевого водорода, получаемого локально, например, при переработке отходов.

Ключевые слова: газ, природный газ, водород, парниковые газы, газовая смесь, углекислый газ.

Ввеление

Одной из наиболее значимых проблем современности, носящей глобальный характер, является антропогенное изменение климата. Осознание масштабов данной угрозы на международном уровне нашло отражение в Рамочной конвенции Организации Объединенных Наций об изменении климата 1992 года, которая обозначила необходимость коллективных действий по противодействию негативным последствиям [1]. Для борьбы с глобальным изменением климата на планете, а также с его негативными последствиями в 2015 году было принято Парижского соглашения, целью которого является сдерживание прироста глобальной средней температуры значительно ниже 2 °C по сравнению с доиндустриальным уровнем. Для достижения этой цели странам-участницам, включая Российскую Федерацию, необходимо реализовать комплекс мер по радикальному сокращению выбросов парниковых газов, основными из которых являются диоксид углерода (СО2), метан (СН4) и закись азота (N2O).

Основным источником эмиссии парниковых газов, в первую очередь CO₂, остается топливно-энергетический комплекс. Процесс сжигания углево-

дородов, включая природный газ, сопровождается образованием значительных объемов диоксида углерода и водяного пара, что напрямую влияет на радиационный баланс планеты и способствует росту средней глобальной температуры [2, 3]. Кроме СО₂, при неполном сгорании или в результате сопутствующих процессов могут образовываться другие вредные вещества, такие как оксид углерода и оксиды азота, что усугубляет экологическую нагрузку и создает риски для здоровья населения [4].

В настоящее время становится актуальным поиск технологических решений, позволяющих декарбонизировать существующие энергетические системы без их полной замены. Одним из наиболее перспективных направлений является использование водорода в качестве низкоуглеродного или безуглеродного энергоносителя. Водород, при сгорании которого образуется преимущественно водяной пар, может применяться в качестве добавки к традиционным углеводородным топливам или полностью замещать их, что потенциально позволяет значительно снизить углеродный след [5]. В последние годы проводятся активные исследования по адаптации существующей газовой инфраструктуры и топливных систем к работе на водородсодержащих смесях. Результаты исследований, проведенных такими организациями, как Avacon, DVGW и E.ON, демонстрируют, что значительная часть находящегося в эксплуатации газового оборудования (например, котлы, плиты) способно функционировать в безопасном режиме при использовании смесей природного газа с водородом, где объемная доля последнего может достигать 20–30% [6]. Более поздние проекты, такие как HyDeploy в Великобритании, успешно подтвердили безопасную подачу 20% водородной смеси в действующую газовую сеть [7].

Однако внедрение водорода сопряжено с комплексом научнотехнических задач, требующих углубленного изучения. Среди них – влияние водорода на процессы горения (скорость пламени, устойчивость, температура), материалы оборудования (риск водородного охрупчивания, герметичность соединений), эффективность и эмиссионные характеристики в различных типах топливных систем.

Цель работы — оценка экологической и экономической эффективности применения водородно-природных смесей в топливных системах.

Изменение выбросов при сгорании водородсодержащих газовой смеси

Для количественной оценки экологического эффекта от добавления водорода в природный газ необходимо провести расчет объемов выбросов, образующихся при сгорании топливной смеси. Основой для такого расчета являются стехиометрические уравнения горения основных компонентов природного газа и водорода:

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

 $C_2H_6 + 3,5O_2 \rightarrow 2CO_2 + 3H_2O$
 $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$
 $C_4H_{10} + 3,25O_2 \rightarrow 2CO_2 + 2,5H_2O$
 $C_5H_{12} + 8O_2 \rightarrow 5CO_2 + 6H_2O$
 $H_2 + 0,5O_2 \rightarrow H_2O$

Молярные отношения реагирующих газов, в соответствии с законом Авогадро, пропорциональны их объемным отношениям. Следовательно, зная компонентный состав газовой смеси (СН₄ 96,2%, C_2H_6 2,80%, C_3H_8 0,148%, C_4H_{10} 0,088%, C_5H_{12} 0,055%), можно с высокой точностью определить теоретические объемы продуктов сгорания.

При сгорании 1 м³ природного газа объем выделяющегося углекислого газа составит [8]:

$$V_{CO2} = (96,20 \cdot 1 + 2,80 \cdot 2 + 0,148 \cdot 3 + 0,088 \cdot 2 + 0,055 \cdot 5) / 100 = 1,027 \text{ м}^3$$
 Объем выделяющихся водяных паров составит:

$$V_{H2O} = (96,20 \cdot 2 + 2,80 \cdot 3 + 0,148 \cdot 4 + 0,088 \cdot 2,5 + 0,025 \cdot 6) / 100 = 2,019 \text{ m}^3$$

Аналогичным образом проводятся расчеты для газовых смесей с добавлением в них 5-30% водорода (см. таблица 1).

Таблица 1 Выбросы парниковых газов при сгорании 1 м 3 газовой смеси.

Водород, %	0	5	10	15	20	25	30
CO ₂ , м ³	1,027	0,976	0,924	0,873	0,822	0,770	0,719
H ₂ O, M ³	2,019	1,968	1,917	1,866	1,815	1,765	1,714

Анализ результатов, представленных в таблице 1, позволяет выявить линейную зависимость между долей водорода в смеси и сокращением объема диоксида углерода. Каждые 5% объема водорода приводят к снижению выбросов CO_2 примерно на 5%. Это объясняется постепенным замещением углеродсодержащих компонентов (CH_4 , C_2H_6 и др.) безуглеродным топливом (H_2), в результате горения которого CO_2 не образуется.

Вопреки первоначальным ожиданиям, объем паров воды в продуктах сгорания не увеличивается, а снижается с ростом доли водорода. При 30% объема водорода выброс H₂O уменьшается на 15%. Этот ключевой факт объясняется стехиометрией реакций горения. При сжигании 1 моля метана образуется 2 моля водяного пара, а для 1 моля водорода — только 1 моль. Несмотря на то что водород имеет более высокую энергетическую ценность на единицу массы, при расчете на единицу объема смеси и с учетом разбавления природного газа, общий выход водяного пара уменьшается. Это важное наблюдение, так как оно указывает на снижение общей энтальпии дымовых газов и потенциальное уменьшение конденсации влаги в системах отвода продуктов сгорания.

Стоимостной анализ применения водородсодержащих газовых смесей

Розничная цена на 1 м³ природного газа, реализуемого населению, составляет 8,32 рублей. В России ежегодно производится более 2,4 миллиардов

м³ водорода. Стоимость получения водорода, по оценкам специалистов [9], составляет от 10 рублей за 1 м³ в зависимости от технологии производства («серый», «голубой», «зеленый» водород).

В таблице 2 даны результаты изменения стоимость 1 м³ газовой смеси с различным содержанием водорода. Стоимость кубометра смеси меняется незначительно и зависит от стоимости получения водорода (которая в последние 2 года возросла с 7 до 10 рублей) [10].

Таблица 2 Стоимость 1 м³ водородсодержащей газовой смеси.

Водород, %	0	5	10	15	20	25	30
Стоимость 1 м ³ газовой смеси, руб.	8,32	8,40	8,49	8,57	8,66	8,74	8,82

Для конечного потребителя более актуальной является стоимость единицы получаемой энергии, а не топлива. Поскольку теплотворная способность водорода на единицу объема значительно ниже, чем у метана, для выработки того же количества тепла требуется больший объем топливной смеси. Средняя стоимость получения 1 кВт тепла при сжигании природного газа составляет 0,82 рубля. Добавление водорода в газовую смесь увеличивает стоимость получения тепла, достигая 1,10 рублей за 1 кВт для смеси с 30% содержанием водорода.

Таблица 3 Стоимость получения 1 кВт тепловой энергии, получаемой при сжигании водородсодержащей газовой смеси

Водород, %	0	5	10	15	20	25	30
Теплота сгорания, кДж/м ³	36599	35310	34022	32732	31443	30155	28867
Стоимость 1 кВт тепла, руб.	0,82	0,86	0,90	0,94	0,99	1,04	1,10
Изменение стоимости, %	100	105	110	115	121	127	134

Заключение

Стехиометрический расчет подтвердил значительное снижение выбросов парниковых газов при сжигании водородсодержащих смесей. Установлено, что добавка 30% водорода приводит к снижению объемных выбросов СО₂ на 30% и выбросов H₂O на 15%. Это обеспечивает прямой экологический эффект и соответствует глобальным трендам декарбонизации энергетики. Ключевым преимуществом рассмотренной технологии является ее высокая совместимость с существующей газовой инфраструктурой. Результаты международных проектов и экспертные оценки свидетельствуют, что существующее газопотребляющее оборудование (котлы, ТЭЦ) способно работать на смесях с содержанием водорода до 20-30% без существенной модернизации. Это значительно снижает порог входа для внедрения технологии по сравнению с другими низкоуглеродными решениями, требующими капитальной перестройки энергосистем.

Максимального эффекта применения водородсодержащих газовых смесей можно добиться в местах получения дешевого водорода. Одним из направлений в данной области является плазменная переработка отходов [11]. Локализация таких производств вблизи крупных центров газопотребления (городов, промышленных зон) минимизирует логистические расходы и делает концепцию распределенного подмешивания водорода в газовые сети экономически обоснованной. Внедрение водородсодержащих топливных смесей позволяет достичь немедленного экологического эффекта с минимальными капитальными затратами. Дальнейшая масштабируемость технологии напрямую зависит от развития экономики водорода, в частности, от снижения стоимости его производства и внедрения мер углеродного регулирования.

Литература

- 1. Ишков А.Г. Роль метана в изменении климата. М.: НИИПЭ, 2018. 34 с.
- 2. Сибгатуллин А., Петличенко А. и др. Оценка потенциала снижения выбросов парниковых газов с учетом перспектив развития газификации регионов России // Энергетическая политика, 2023, №10(189). С. 30-41.
- 3. Экология, энергетика, энергосбережение: бюллетень. М.: ПАО «Мосэнерго», 2023. Выпуск 2. Водородная энергетика: за и против. 36 с.
- 4. Шегельман И.Р., Щукин П.О., Морозов М.А. Ресурсные вызовы в области региональной биоэнергетики и пути их преодоления // Инженерный вестник Дона, 2012, № 2. URL: ivdon.ru/ru/magazine/archive/ n2y2012/819
- 5. Bromberg L. In-Cylinder Laminar Flame Propagation Speed: Effect on hydrogen and rich gas addition. MIT Plasma Science and Fusion Center, 2005. 23p.
- 6. Davis M. Greenhouse gas reduction potential and cost-effectiveness of economy-wide hydrogen-natural gas blending for energy end uses // Renewable and Sustainable Energy Reviews. 2023. DOI: 10.1016/j.rser.2022.112962.
- 7. HyDeploy Project. Project Close Down Report. 2021. URL: hydeploy.co.uk/app/uploads/2022/06/HyDeploy-Close-Down-Report_Final.pdf
- 8. Шарапов Р.В., Осипов В.А. Использование водорода для повышения экологичности топливных систем // Машиностроение и безопасность жизнедеятельности. 2024. № 3. С. 68-72.
- 9. Обзор российского рынка водорода. Сентябрь 2024. Прогноз развития до 2028 года. URL: dzen.ru/a/Z018iYILtH PTJXW
- 10. Шарапов Р.В. Снижение выбросов парниковых газов за счет добавления водорода в системы газоснабжения // Машиностроение и безопасность жизнедеятельности. 2025. № 2. С. 65-69.
- 11. Артемов А.В., Переславцев А.В., Вощинин С.А. Получение водорода в процессе плазменной переработки отходов // Энергия: экономика, техника, экология. 2021. № 6. С. 30-35.

References

- 1. Ishkov A.G. Rol metana v izmenenii klimata [The role of methane in climate change]. M.: NIIPE, 2018. 34 p.
- 2. Sibgatullin A., Petlichenko A., Blinov A., Ishkov A., Romanov K. Energeticheskaya politika, 2023, №10(189). Pp. 30-41.
- 3. Ekologiya, energetika, energosberezhenie: byulleten [Ecology, energy, energy saving: bulletin]. M.: PAO «Mosenergo», 2023. Vol. 2. 36 p.
- 4. Shegelman I.R., Shchukin P.O., Morozov M.A. Inzhenernyj vestnik Dona, 2012, № 2. URL: ivdon.ru/ru/magazine/archive/ n2y2012/819
- 5. Bromberg L. In-Cylinder Laminar Flame Propagation Speed: effect on hydrogen and rich gas addition. MIT Plasma Science and Fusion Center, 2005. 23p.
- 6. Davis M. Renewable and Sustainable Energy Reviews. 2023. DOI: 10.1016/j.rser.2022.112962.
- 7. HyDeploy Project. Project Close Down Report. 2021. URL: hydeploy.co.uk/app/uploads/2022/06/HyDeploy-Close-Down-Report Final.pdf
- 8. Sharapov R.V., Osipov V.A. Mashinostroenie i bezopasnost' zhiznedeyatel'nosti. 2024. № 3. Pp. 68-72.
- 9. Obzor rossijskogo rynka vodoroda. Sentyabr' 2024. Prognoz razvitiya do 2028 goda. [Overview of the Russian Hydrogen Market. September 2024. Development Forecast until 2028].
 - 10. URL: dzen.ru/a/Z018iYILtH_PTJXW
- 11. Sharapov R.V. Mashinostroenie i bezopasnost' zhiznedeyatel'nosti. 2025. № 2. Pp. 65-69.
- 12. Artemov A.V., Pereslavcev A.V., Voshchinin S.A. Energiya: ekonomika, tekhnika, ekologiya. 2021. № 6. Pp. 30-35.

Дата поступления: 12.10.2025 Дата публикации: 26.11.2025