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Аннотация: В статье описывается эксперимент по составлению обучающей выборки, 
обучению и тестированию модели нейронной сети системы компьютерного зрения для 
распознавания прогаров защитной трубы на установке непрерывной разливки стали. 
Рассматривается вопрос обоснованности аугментации данных для обучения. 
Анализируются полученные результаты.  
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Введение 

В технологическом процессе непрерывного производства стали одним 

из самых сложных этапов является ее разливка на установке непрерывной 

разливки стали (УНРС) [1], схема которой представлена на рис. 1.  

 

 
Рис. 1. – Схема установки непрерывной разливки стали 

Такой способ разливки стали является прогрессивным и эффективным, 

позволяющим получать высококачественные заготовки [2]. На УНРС из 
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сталеразливочного ковша жидкая сталь по специальной огнеупорной 

защитной трубе попадает в промежуточный ковш. Данная труба защищает 

сталь от вторичного окисления, которое может привести к изменению 

химического состава и, впоследствии, ухудшению качества стали – сталь 

может перестать соответствовать требованиям заказа или возникнут какие-

либо дефекты при прокате, например, плены. 

Защитная труба – это закупаемый расходный материал, использование 

которого рассчитано на определенное количество плавок (гарантированная 

производителем стойкость), так как под воздействием высоких температур, 

порядка ~1500 °C, он постепенно начинает разрушаться. Поэтому, защитная 

труба должна быть вовремя заменена на новую, не допустив нарушения 

технологического процесса. Без защитной трубы сталь разливать нельзя [3]. 

Однако, в процессе разливки возможно возникновение нештатных 

ситуаций, в частности, непредвиденного прогара сталеразливочной трубы, 

что чревато не только внеплановым простоем агрегата и повышением 

содержания кислорода в стали, но и угрозой жизни работающих в цехе 

сотрудников.  

Традиционные методы контроля за состоянием защитной трубы 

основаны на визуальном наблюдении за оборудованием вживую и через 

камеры на посту, что сопряжено с высокой нагрузкой на персонал и 

необходимостью выполнения ручных операций в случае аварии. Внедрение 

интеллектуальных систем на основе компьютерного зрения в 

металлургическом производстве [4, 5] позволяет автоматизировать многие 

процессы, в том числе мониторинг состояния защитной трубы, и обеспечить 

оперативное оповещение о прогарах. 

Цель настоящей работы – описание эксперимента по составлению 

обучающей выборки и использованию технологии аугментации для обучения 
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модели нейронной сети используемой системы мониторинга и результатов 

его проведения. 

Описание эксперимента 

Для решения проблемы обнаружения прогаров защитной трубы 

использовалась модель YOLO, зарекомендовавшая себя точной и 

высокоэффективной в задачах детекции объектов [6]. Для оптимального 

развертывания в условиях ограниченных вычислительных ресурсов 

промышленного предприятия была выбрана версия v5n. 

Прогар защитной трубы – событие редкое, случающееся даже не 

еженедельно, поэтому при подготовке эксперимента возникли сложности 

создания датасета для обучения модели. Ввиду того, что на производстве 

могут использоваться защитные трубы разных конструкций и 

геометрической формы, в зависимости от условий разливки и требований 

заказчика, сложность создания датасета существенно возрастает. 

В проведенном эксперименте для одного типа трубы на камеры, 

установленные в производственном цехе, удалось записать интересующее 

нас событие в виде  двух видео. Однако анализ сделанных записей показал, 

что только одно из них удовлетворяло требованиям эксперимента и задачам 

тестирования модели. Датасет составлялся путем разбиения этого видео на 

отдельные кадры с удалением идентичных кадров. Всего таким образом было 

получено 320 изображений с разрешением 1920×1080 пикс. Однако, стоило 

учитывать, что все эти кадры представляют собой изображение одного и того 

же прогара, но в разные моменты времени – от появления трещины до 

замены защитной трубы на новую. Два варианта примера изображения 

прогара защитной трубы представлены далее на рис. 2 и рис. 3.  

Очевидно, что полученный таким образом датасет не представителен и 

для обучения модели его недостаточно. Поэтому в дополнение была 

использована техника аугментации [7, 8] – искусственного размножения 
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данных, позволяющая увеличить набор обучающих изображений за счет 

получения новых путем синтеза и изменения существующих [9, 10].  

Продвинутые техники аугментации позволяют увеличить количество 

данных, повысить скорость разработки и уменьшить ее стоимость. Более 

того, это способствует уменьшению количества параметров нейронной сети, 

так как нейронная сеть начинает выделять общие признаки, а не 

специфичные для конкретного датасета. 

 
Рис. 2. – Прогар трубы (вариант 1)       Рис. 3 – Прогар трубы (вариант 2) 

 

Для расширения обучающего набора было принято решение 

использовать такие методы аугментации [8], как поворот изображения, 

масштабирование, синтез. 

В результате из 800 изображений в датасете для обучения модели 520 – 

аугментированы, а общее соотношение составило: 29% – синтезированные 

изображения; 36% – изображения, созданные путём геометрических 

преобразований из оригинальных изображений; 35% – оригинальные 

изображения. 

Для валидации использовались 100 изображений в аналогичном 

соотношении исходных и аугментированных данных.  

После сбора данных была выполнена их разметка с максимально 

точным выделением областей прогаров в формате bounding boxes. Затем – 

настроена конфигурация модели YOLO для обучения в течение 20 эпох для 
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обеспечения приемлемой ошибки [11]. Параметры, отличающиеся от 

определенных в модели по умолчанию [6], следующие: 

− imgsz=1920 пикс (для сохранения исходной детализации); 

− deterministic=True (для воспроизводимости результатов при 

повторных запусках); 

− task='detect' (явное указание задачи детекции объекта на 

изображении); 

− box=4 (выбрано эмпирически для достижения баланса между 

точностью локализации и классификации); 

− amp=True (ускорение обучения с минимальными потерями в 

точности). 

Обучение модели с описанной выше конфигурацией заняло 

приблизительно 22 часа, и по его завершении были получены следующие 

значения ключевых метрик, представленные на рис. 4. 

Интерпретация потерь: 

− train/box_loss снизилась с 1.03 до 0.51, то есть модель точно 

позиционирует прогары защитной трубы на известной выборке; 

− train/cls_loss уменьшилась с 12.84 до 0.84, что свидетельствует о том, 

что модель научилась отличать прогары защитной трубы от фона на 

известной выборке; 

− val/box_loss снизилась с 0.85 до 0.59 – к 20 эпохе модель способна 

достаточно точно определять границы областей прогаров на новых 

изображениях; 

− val/cls_loss уменьшилась с 8.97 до 0.96, то есть модель правильно 

обнаруживает прогары защитной трубы (отличает от фона) на большинстве 

изображений валидационной выборки. 
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Рис. 4. – Результаты обучения модели 

 

Интерпретация метрик: 

− точность определения прогаров к 20 эпохе составила 0.86. Иначе 

говоря, 86% обнаруженных моделью объектов действительно являются 

прогарами защитной трубы; 

− полнота – 0.865, то есть модель обнаруживает 86.5% реальных 

прогаров на изображении; 

− mAP@0.5 и mAP@0.5:0.95 равны 0.93 и 0.64 соответственно, что 

говорит об эффективности определения областей прогаров. 

Несмотря на колебание метрик от эпохи к эпохе, из графиков на рис. 4 

видно, что снижение потерь и рост метрик в конечном итоге 

стабилизировались, а, значит, модель качественно обучилась. 

Однако, при тестировании на 173 изображениях, не участвовавших в 

этапах обучения и валидации, уверенность модели значительно снизилась и 

варьировалась в интервале от 42% до 60% (примеры представлены на рис. 5 и 

рис. 6). На трех изображениях (~1.7% от общего числа) прогар не был 
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определён совсем, а на 23 изображениях (~13.3% от общего числа) – 

определён ложно.  

В условиях реального производственного процесса такой точности 

недостаточно – понадобится валидация оператора.  

 
Рис. 5. – Определение прогара трубы       Рис. 6 – Определение прогара трубы  

(вариант 1)                                                           (вариант 2) 

 

Заключение 

На основе проведённого эксперимента для решения задачи детекции 

прогаров сталеразливочной трубы на установке непрерывной разливки стали 

можно сделать выводы о том, что, во-первых, требуется дообучение 

сформированной модели.  

Во-вторых, необходимо дополнить обучающую и валидационную 

выборки большим количеством синтезированных изображений разного 

масштаба, чтобы модель имела более полное представление о возможных 

формах и размерах прогаров. Конструкция и геометрическая форма 

защитной трубы может существенно изменяться в зависимости от условий 

разливки и требований заказчика. 

В-третьих, следует использовать до 30 – 40 эпох обучения с целью 

дальнейшего снижения классификационных потерь и ошибки локализации 

области прогара. 
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