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Разработка гибридной нейронной сети глубокого обучения с 

использованием квадратнокорневого сигма-точечного фильтра Калмана 

для оценки массы автомобиля и уклона дороги 
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Аннотация: В статье представлена гибридная нейронная сеть оценки массы автомобиля и 
продольного/поперечного уклонов дороги, объединяющая квадратнокорневой сигма-
точечный фильтр Калмана и нейросетевую модель на базе энкодера трансформера с 
использованием перекрёстного внимания к остаткам оценивания. Предложенный подход 
сочетает физическую интерпретируемость фильтра с высокой аппроксимационной 
способностью нейросети. Для обеспечения внедрения на встраиваемых электронных 
блоках управления модель была упрощена с помощью преобразования знаний в 
компактную сеть долгой краткосрочной памяти. Результаты экспериментов в различных 
сценариях показали снижение средней ошибки более чем на 25 % при вычислительной 
задержке менее 0,3 мс. 
Ключевые слова: оценка состояния транспортного средства, оценка уклона дороги, оценка 
массы автомобиля, нейросеть типа трансформер, перекрёстное внимание, адаптивная 
фильтрация, дистилляция знаний, квадратнокорневой сигма-точечный фильтр Калмана, 
интеллектуальные транспортные средства, слияние датчиков. 

Введение 

Современные методы оценки динамических параметров транспортного 

средства условно подразделяются на две категории: модельно-

ориентированные и основанные на данных. Модельно-ориентированные 

алгоритмы используют динамические или кинематические модели 

автомобиля совместно с фильтрами типа Калмана или нелинейными 

наблюдателями. Недавние работы показывают: адаптивные фильтры Калмана 

с двойными факторами забывания для онлайн-настройки ковариаций шумов 

процесса и измерений (Q и R) [1,2]; двухуровневую фильтрацию для условий 

отсутствия глобальной навигационной спутниковой системы при поддержке 

инерциального измерительного модуля [3,4]; режимное переключение для 

сцен пробуксовки колёс [5]. Наблюдатель-ориентированные подходы, 

включая алгоритмы скользящего режима и гибриды рекурсивного метода 

наименьших квадратов с расширенным фильтром Калмана [6–9] снижают 
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требования к датчикам, но чувствительны к рассогласованию модели и 

пороговой логике. Многомодельные методы с объединением доказательств 

повышают надёжность, однако требуют существенно больших 

вычислительных затрат [10]. 

Подходы, основанные на данных, используют методы глубокого 

обучения для моделирования многомерных временных рядов. Свёрточные и 

рекуррентные нейронные сети, а также облегчённые архитектуры на основе 

управляемых рекуррентных блоков, повышают точность краткосрочного 

прогнозирования [11,12]. Вместе с тем такие модели нередко оказываются 

недостаточно физически согласованными и могут хуже обобщаться при 

изменении условий движения. 

Оценивание поперечного уклона дороги остаётся сложной задачей. 

Методы компьютерного зрения деградируют при неблагоприятной видимости 

(заслонения, тени, блики), а применение лидара требует дорогостоящих 

датчиков [13]. Для сочетания интерпретируемости оценок, получаемых 

методами фильтрации, и адаптивности нейросетевых моделей предложены 

гибридные схемы, в которых нейронная сеть динамически корректирует 

параметры фильтра Калмана [14]. 

Модель динамики транспортного средства и расчёт сил шин 

Модель динамики транспортного средства с семью степенями свободы 

включает три степени свободы корпуса – продольную скорость 𝑣𝑣𝑥𝑥 , 

поперечную скорость 𝑣𝑣𝑦𝑦 и угловую скорость рыскания 𝜔𝜔, и четыре угловые 

скорости вращения колёс (рис.1 и рис.2). На основе модели учитывается 

динамика подвески (тангаж/крен относительно дороги) для восстановления 

истинных углов корпуса и уклонов дорожного полотна. 

Уравнения движения имеют следующий вид [15]: 
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𝜔̇𝜔 =
1
𝐼𝐼𝑍𝑍
���𝐹𝐹𝑋𝑋𝑋𝑋1 + 𝐹𝐹𝑋𝑋𝑋𝑋2� ∗ 𝑠𝑠𝑠𝑠𝑠𝑠�𝛿𝛿𝑓𝑓� + �𝐹𝐹𝑌𝑌𝑌𝑌1 + 𝐹𝐹𝑌𝑌𝑌𝑌2� ∗ 𝑐𝑐𝑐𝑐𝑐𝑐�𝛿𝛿𝑓𝑓�� ∗ 𝑎𝑎 +

𝑙𝑙1
2

∗ ��𝐹𝐹𝑋𝑋𝑋𝑋1 − 𝐹𝐹𝑋𝑋𝑋𝑋2� ∗ 𝑐𝑐𝑐𝑐𝑐𝑐�𝛿𝛿𝑓𝑓� + �𝐹𝐹𝑌𝑌𝑌𝑌1 − 𝐹𝐹𝑌𝑌𝑌𝑌2� ∗ 𝑠𝑠𝑠𝑠𝑠𝑠�𝛿𝛿𝑓𝑓�� −
𝑙𝑙2
2
∗ (𝐹𝐹𝑋𝑋𝑋𝑋1 − 𝐹𝐹𝑋𝑋𝑋𝑋2)

− (𝐹𝐹𝑌𝑌𝑌𝑌1 + 𝐹𝐹𝑌𝑌𝑌𝑌2) ∗ 𝑏𝑏� 

𝑎𝑎𝑥𝑥 =
�−�𝐹𝐹𝑋𝑋𝑋𝑋1 + 𝐹𝐹𝑋𝑋𝑋𝑋2� ∗ 𝑠𝑠𝑠𝑠𝑠𝑠�𝛿𝛿𝑓𝑓� − �𝐹𝐹𝑌𝑌𝑌𝑌1 + 𝐹𝐹𝑌𝑌𝑌𝑌2� ∗ 𝑐𝑐𝑐𝑐𝑐𝑐�𝛿𝛿𝑓𝑓��

𝑚𝑚
 

𝑎𝑎𝑦𝑦 = [�𝐹𝐹𝑋𝑋𝑋𝑋1 + 𝐹𝐹𝑋𝑋𝑋𝑋2� ∗ 𝑐𝑐𝑐𝑐𝑐𝑐�𝛿𝛿𝑓𝑓� − �𝐹𝐹𝑌𝑌𝑌𝑌1 + 𝐹𝐹𝑌𝑌𝑌𝑌2� ∗ 𝑠𝑠𝑠𝑠𝑠𝑠�𝛿𝛿𝑓𝑓�]/𝑚𝑚   (1) 
 

где m – масса автомобиля, 𝐼𝐼𝑧𝑧 – момент инерции относительно вертикальной 

оси, 𝑙𝑙1,𝑙𝑙2 – ширины колеи переднего и заднего мостов, 𝑎𝑎, 𝑏𝑏 – расстояния от 

центра масс до переднего и заднего мостов, 𝛿𝛿𝑓𝑓 – угол поворота передних колёс. 

 
Рис. 1  – Модель динамики транспортного средства с 7-степенями свободы 

 
Рис. 2.  – Модель крена с учётом степени свободы подвески. 

Под влиянием продольных/поперечных ускорений происходит 

перераспределение вертикальных нагрузок; для переднего левого колеса: 

𝐹𝐹𝑍𝑍𝑍𝑍1 = �1
2
𝑚𝑚𝑚𝑚 −𝑚𝑚𝑎𝑎𝑌𝑌 ∗

ℎ𝑔𝑔
𝑙𝑙1
� ∗ 𝑏𝑏

𝑙𝑙
− 1

2
𝑚𝑚𝑎𝑎𝑋𝑋 �

ℎ𝑔𝑔
𝑙𝑙
� + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝛾𝛾𝑥𝑥 ∗ �

𝑏𝑏
𝑙𝑙
� + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝛾𝛾𝑦𝑦 �

𝑙𝑙1
ℎ𝑔𝑔
� ,  (2) 

Аналогичные выражения применяются для 𝐹𝐹𝑍𝑍𝑍𝑍2 , 𝐹𝐹𝑍𝑍𝑟𝑟1  и 𝐹𝐹𝑍𝑍𝑍𝑍2 . Здесь ℎ𝑔𝑔  – 

высота центра масс, 𝛾𝛾𝑥𝑥 ,𝛾𝛾𝑦𝑦  – продольный и поперечный уклоны дороги. Для 

разделения влияния уклонов и положения кузова в вектор наблюдений 

добавляют датчики прогиба подвески (активная/полуактивная подвеска). При 

малых углах:  
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ℎ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = (𝐿𝐿𝐿𝐿1 + 𝑅𝑅𝑅𝑅1)/ 2      ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = (𝐿𝐿𝐿𝐿2 + 𝑅𝑅𝑅𝑅2)/ 2 

ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = (𝐿𝐿𝐿𝐿1 + 𝐿𝐿𝐿𝐿2)/2     ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = (𝑅𝑅𝑅𝑅1 + 𝑅𝑅𝑅𝑅2)/2 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = atan(�ℎ𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓−ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟�
𝐿𝐿

)    𝑅𝑅𝑅𝑅𝑅𝑅𝑙𝑙𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = atan (�ℎ𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡−ℎ𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�
𝑙𝑙1

)    (3) 

Такое геометрическое разделение позволяет более точно оценить 

уклоны дороги, отделяя их от движений кузова. Используя данные 

инерциального измерительного модуля и рассчитанные вертикальные 

нагрузки, можно оценить боковые силы шин согласно аппроксимирующей 

модели (формула Пачейки) [16]: 
𝐹𝐹𝑌𝑌(𝛼𝛼) = 𝐷𝐷 ∗ 𝑠𝑠𝑠𝑠𝑠𝑠�𝐶𝐶 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝐵𝐵 ∗ 𝛼𝛼 − 𝐸𝐸�𝐵𝐵 ∗ 𝛼𝛼 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵 ∗ 𝛼𝛼)��� + 𝑆𝑆𝑆𝑆,   (4) 

где 𝛼𝛼 – угол скольжения, а 𝐵𝐵,𝐶𝐶,𝐷𝐷,𝐸𝐸 – коэффициенты формы. Они подогнаны 

по данным CarSim и уточнены дорожными испытаниями. С учётом 

зависимости от вертикальной нагрузки: 
𝐹𝐹𝑌𝑌(𝛼𝛼) = (𝑎𝑎1 𝐹𝐹𝑍𝑍2 + 𝑎𝑎2𝐹𝐹𝑍𝑍 + 𝑎𝑎3) ∗ 

∗ sin�𝐶𝐶 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�𝐵𝐵 ∗ 𝛼𝛼 − 𝐸𝐸�𝐵𝐵 ∗ 𝛼𝛼 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝐵𝐵 ∗ 𝛼𝛼)��� + (𝑆𝑆𝑆𝑆 ∗ 𝐹𝐹𝑍𝑍 + 𝑎𝑎4),   (5) 

Адаптивный квадратнокорневой сигма-точечный фильтр Калмана для 

совместной оценки массы автомобиля и уклонов дороги 

В процессе выполнения работы рассматривается оценка трёх основных 

параметров: массы автомобиля и продольного (𝛾𝛾𝑥𝑥) и поперечного (𝛾𝛾𝑦𝑦) уклонов 

дороги. Вектор состояния имеет следующий вид: 

𝑥𝑥 = �𝑙𝑙𝑙𝑙𝑙𝑙,𝛾𝛾𝑥𝑥, 𝛾𝛾𝑦𝑦�
𝑇𝑇 ,         (6) 

где𝑙𝑙𝑙𝑙𝑚𝑚 - элемент стабилизации оценивания, подавления мультипликативного 

шума и повышения устойчивости. 

Учитывая, что изменения уклонов дороги малы, их динамика 

моделируется с использованием метода «блуждания»: 
𝑥𝑥𝑘𝑘 = 𝑥𝑥𝑘𝑘−1 + 𝑤𝑤𝑘𝑘−1      𝑤𝑤𝑘𝑘−1~𝑁𝑁(0,𝑄𝑄) ,      (7) 

Вектор наблюдения включает продольное и поперечное ускорения 𝑎𝑎𝑥𝑥, 

𝑎𝑎𝑦𝑦  и оценки уклонов получены из ИНС и датчиков положения кузова 
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транспортного средства. Вектор наблюдения может быть представлен 

выражением: 

𝑍𝑍𝑘𝑘 = �ax, ay, 𝛾𝛾𝑥𝑥, 𝛾𝛾𝑦𝑦�
Tℎ(𝑥𝑥𝑘𝑘 ,𝑢𝑢𝑘𝑘) + 𝑣𝑣𝑘𝑘,  

𝑎𝑎𝑥𝑥 = 𝐹𝐹𝑋𝑋
𝑚𝑚

+ 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝛾𝛾𝑥𝑥, 𝑎𝑎𝑦𝑦 = 𝐹𝐹𝑦𝑦
𝑚𝑚
− 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝛾𝛾𝑦𝑦,      (8) 

 𝛾𝛾𝑥𝑥 = 𝛾𝛾𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼 − 𝛾𝛾𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝛾𝛾𝑦𝑦 = 𝛾𝛾𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 − 𝑌𝑌𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦, 𝑚𝑚 = 𝑒𝑒𝑒𝑒𝑒𝑒 (𝑥𝑥1) 

где 𝛾𝛾𝑥𝑥𝐼𝐼𝐼𝐼𝐼𝐼  - угол продольного наклона, измеренный ИНС; 𝛾𝛾𝑥𝑥𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  - угол 

продольного наклона кузова транспортного средства относительно 

поверхности дороги; 𝛾𝛾𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦  - угол поперечного наклона, измеренный ИНС, 

𝑌𝑌𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦  - угол поперечного наклона кузова транспортного средства 

относительно поверхности дороги. 

Из-за шумов датчиков (например, подвески) требуется фильтрация 

наблюдений. В алгоритме квадратнокорневого сигма-точечного фильтра 

Калмана (SR-UKF) масса инициализируется номинально, углы уклона — 

нулём; ковариации процесса Q и измерений R разлагают по Холецкому. Для 

размерности состояния 𝑛𝑛 = 3 формируются 2𝑛𝑛 + 1 сигма-точек: 

�
𝑥𝑥𝑘𝑘0 = 𝑥𝑥�𝑘𝑘

𝑥𝑥𝑘𝑘𝑖𝑖 = 𝑥𝑥�𝑘𝑘 + √𝑛𝑛 + 𝜆𝜆 ∗ 𝑆𝑆𝑘𝑘   𝑖𝑖 = 1 … …𝑛𝑛
𝑥𝑥𝑘𝑘𝑖𝑖+𝑛𝑛 = 𝑥𝑥�𝑘𝑘 − √𝑛𝑛 + 𝜆𝜆 ∗ 𝑆𝑆𝑘𝑘    1 … …𝑛𝑛

 ,       (10) 

Здесь 𝜆𝜆  – параметр масштабирования, определяющий разброс сигма-точек 

вокруг среднего значения, n – размерность вектора состояния. Выражение 

√𝑛𝑛 + 𝜆𝜆 ∗ 𝑆𝑆𝑘𝑘 представляет собой отклонение от среднего. Параметр 𝜆𝜆 задаётся 

в виде уравнения: 
𝜆𝜆 = 𝛼𝛼2(𝑛𝑛 + 𝜅𝜅) − 𝑛𝑛 ,         (11) 

где 𝛼𝛼 определяет разброс сигма-точек (меньшие значения — более плотное 

распределение), а 𝜅𝜅 служит для улучшенного учёта высших моментов; веса 

сигма-точек используются при вычислении взвешенного среднего и 

ковариаций.  

Веса для каждой сигма-точки определяются согласно выражению: 
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𝑊𝑊0
𝑚𝑚 =

𝜆𝜆
𝑛𝑛 + 𝜆𝜆

       𝑊𝑊0
𝐶𝐶 =

𝜆𝜆
𝑛𝑛 + 𝜆𝜆

+ (1 − 𝛼𝛼2 + 𝛽𝛽) 

𝑊𝑊𝑖𝑖
𝑚𝑚 = 𝑊𝑊𝑖𝑖

𝑐𝑐 = 1
2∗(𝑛𝑛+𝜆𝜆)

, 𝑖𝑖 = 1, … ,2𝑛𝑛. ,       (12) 

Каждая сигма-точка проходит через нелинейную модель процесса, и 

предсказанное среднее вычисляется по формуле: 

𝑋𝑋�𝑘𝑘+1|𝑘𝑘 = ∑𝑊𝑊𝑖𝑖
𝑚𝑚 𝑋𝑋𝑘𝑘+1|𝑘𝑘

 (𝑖𝑖)  ,         (13) 

Остатки вычислений имеют вид: 

𝜒𝜒𝑖𝑖 = 𝑋𝑋𝑘𝑘+1|𝑘𝑘
(𝑖𝑖) − 𝑋𝑋�𝑘𝑘+1|𝑘𝑘 ,         (14) 

Корни ковариации состояния получены на основе объединения остатков 

𝜒𝜒𝑖𝑖 с �𝑄𝑄𝑘𝑘 с дальнейшим разложением с помощью QR-факторизации: 

𝑆𝑆𝑥𝑥 𝑘𝑘+1|𝐾𝐾 = 𝑄𝑄𝑄𝑄�� �𝑊𝑊𝑖𝑖
𝑐𝑐 ∗ 𝜒𝜒𝑖𝑖 ,�𝑄𝑄𝑘𝑘�� ,       (15) 

Прогнозирование измерений при размерности, равной четырем имеет вид: 

𝑍𝑍𝑘𝑘+1|𝑘𝑘
(𝑖𝑖) = ℎ �𝑋𝑋𝑘𝑘+1|𝑘𝑘

(𝑖𝑖) �     𝑍̂𝑍𝑘𝑘+1|𝑘𝑘 = ∑ 𝑊𝑊𝑖𝑖
𝑚𝑚 ∗ 𝑍𝑍𝑘𝑘+1|𝑘𝑘

(𝑖𝑖)1=2𝑛𝑛
0  ,     (16) 

Остатки измерений и их ковариация представлены выражениями: 

𝜉𝜉𝑖𝑖 = 𝑍𝑍𝑘𝑘+1|𝑘𝑘
(𝑖𝑖) − 𝑍̂𝑍𝑘𝑘+1|𝑘𝑘 , 𝑆𝑆𝑧𝑧,𝑘𝑘+1|𝑘𝑘 = 𝑄𝑄𝑄𝑄([�𝑊𝑊𝑖𝑖

𝑐𝑐 ∗ 𝜉𝜉𝑖𝑖 ,�𝑅𝑅𝑘𝑘]) ,     (17) 

Кросс-ковариация, усиление Калмана и обновление состояния имеет вид: 

𝑃𝑃𝑥𝑥𝑥𝑥,𝑘𝑘+1|𝑘𝑘 = � 𝑊𝑊𝑖𝑖
𝑐𝑐𝜒𝜒𝑖𝑖𝜉𝜉𝑖𝑖𝑇𝑇

1=2𝑛𝑛

0

, 𝑘𝑘 = 𝑃𝑃𝑥𝑥𝑥𝑥,𝑘𝑘+1|𝑘𝑘�𝑆𝑆𝑧𝑧,𝑘𝑘+1|𝑘𝑘𝑆𝑆𝑧𝑧,𝑘𝑘+1|𝑘𝑘
𝑇𝑇 �

−1 = 𝑃𝑃𝑥𝑥𝑥𝑥,𝑘𝑘+1|𝑘𝑘𝑆𝑆𝑧𝑧,𝑘𝑘+1|𝑘𝑘
−𝑇𝑇 𝑆𝑆𝑧𝑧,𝑘𝑘+1|𝑘𝑘

−1  

𝑋𝑋𝑘𝑘+1 = 𝑋𝑋�𝑘𝑘+1|𝑘𝑘 + 𝐾𝐾𝐾𝐾 ∗ 𝑦𝑦𝑘𝑘� ,        (18) 

Прогнозирование с фактической ковариацией определяются по формуле: 
𝑦𝑦𝑘𝑘� = 𝑧𝑧𝑘𝑘 − 𝑍̂𝑍𝑘𝑘+1|𝑘𝑘 

𝑠𝑠𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝑆𝑆𝑧𝑧,𝑘𝑘+1|𝑘𝑘𝑆𝑆𝑧𝑧,𝑘𝑘+1|𝑘𝑘

𝑇𝑇 , 𝑠𝑠𝑘𝑘� = 𝑦𝑦𝑘𝑘�𝑦𝑦𝑘𝑘�
𝑇𝑇 ,       (19) 

На основе выражения (19) получено адаптивное обновление матрицы 𝑅𝑅: 

𝑅𝑅𝑘𝑘+1 = 𝑅𝑅𝑘𝑘(1 − 𝜂𝜂𝑅𝑅) + 𝜂𝜂𝑅𝑅�𝑠𝑠𝑘𝑘� − 𝑠𝑠𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑝𝑝𝑝𝑝𝑝𝑝 ,      (21) 

где 𝜂𝜂𝑅𝑅 ∈ (0,1] – коэффициент адаптации шума измерений, 𝜂𝜂𝑅𝑅�𝑠𝑠𝑘𝑘� − 𝑠𝑠𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝑝𝑝𝑝𝑝𝑝𝑝 - 

симметризует аргумент и обеспечивает его положительную 

полуопределённость. Если 𝑠𝑠𝑘𝑘� − 𝑠𝑠𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 > 0 , фильтр недооценил шум 

измерений, и 𝑅𝑅 увеличивается; иначе – уменьшается. 

Адаптивное обновление матрицы 𝑄𝑄 имеет вид: 



Инженерный вестник Дона, №2 (2026) 
ivdon.ru/ru/magazine/archive/n2y2026/10751 
 

 

 

© Электронный научный журнал «Инженерный вестник Дона», 2007–2026 

∆𝑄𝑄𝑘𝑘 = 𝐾𝐾𝐾𝐾�𝑠𝑠𝑘𝑘� − 𝑠𝑠𝑘𝑘
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�𝐾𝐾𝑘𝑘𝑇𝑇 ,𝑄𝑄𝑘𝑘+1 = 𝑄𝑄𝑘𝑘�1 − 𝜂𝜂𝑄𝑄� + 𝜂𝜂𝑄𝑄∆𝑄𝑄𝑘𝑘 ,    (22) 

При 𝜂𝜂𝑄𝑄 ∈ [0.001, 0.01] , выбранных малыми для предотвращения 

расходимости. На 𝑄𝑄𝑘𝑘+1  накладываются верхние и нижние границы для 

поддержания численной устойчивости.  

Обновление корня ковариации определяется по формуле: 
𝑈𝑈𝑘𝑘 = 𝐾𝐾𝐾𝐾𝑆𝑆𝑧𝑧,𝑘𝑘+1|𝑘𝑘, 𝑆𝑆𝑘𝑘+1 = 𝑐𝑐ℎ𝑜𝑜𝑜𝑜�𝑆𝑆𝑥𝑥 𝑘𝑘+1|𝐾𝐾𝑆𝑆𝑥𝑥 𝑘𝑘+1|𝐾𝐾

𝑇𝑇 − 𝑈𝑈𝑘𝑘𝑈𝑈𝑘𝑘𝑇𝑇� ,    (23) 

где chol - разложение Холецкого для положительно определённой матрицы. 

Выражение (23) завершают адаптивный цикл фильтрации в SR-UKF, 

обеспечивая согласованное обновление 𝑄𝑄  и 𝑅𝑅  при сохранении численной 

устойчивости корня ковариации. 

Оценивание параметров движения автомобиля с использованием 

глубокой нейронной сети на основе трансформера с физическими 

ограничениями и многоголовым механизмом внимания 

В работе для оценки параметров движения автомобиля использовалась 

нейросетевая модель типа «трансформер» с энкодерной структурой, 

оптимизированная для регрессии состояний по данным датчиков в 

скользящем временном окне. Архитектура включает позиционное 

кодирование, механизм самовнимания с четырьмя параллельными 

подпространствами обработки и три последовательно соединённых 

энкодерных блока. В каждом блоке применяется нормализация, остаточные 

связи и регуляризация, а также полносвязная подсеть размерности 256–1024–

256. Выход скрытого представления преобразуется полносвязным слоем в 

десять оцениваемых параметров: массу автомобиля, продольный и 

поперечный уклоны дороги, продольную и поперечную скорости, углы 

тангажа, крена и рыскания, а также угол бокового увода. Для оценки 

вычислительной эффективности модель тестировалась на целевой 

вычислительной платформе с использованием ускоренных режимов 
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вычислений на графическом процессоре; полученная задержка на одну 

итерацию не превышает 0,3 мс. 

Нормализованная последовательность 𝑋𝑋 ∈  𝑅𝑅𝑇𝑇∗𝐷𝐷  с позиционными 

кодировками поступает в признаковое пространство трансформера. 

Многоголовое самовнимание формирует несколько «голов», работающих в 

разных линейных подпространствах для определения разнообразных 

нелинейных связей. Структура и процесс алгоритма трансформера 

представлены на рис.3 [17]. 

Для реализации внимания входная последовательность линейно 

отображается в три набора признаков — запросы (Q), ключи (K) и значения 

(V), после чего вычисляются коэффициенты внимания и формируется 

уточнённое представление последовательности. Эти операции описываются 

выражениями: 
𝑄𝑄𝑖𝑖 = 𝑋𝑋𝑊𝑊𝑖𝑖

𝑄𝑄;𝐾𝐾𝑖𝑖 = 𝑋𝑋𝑊𝑊𝑖𝑖
𝐾𝐾;𝑉𝑉𝑖𝑖 = 𝑋𝑋𝑊𝑊𝑖𝑖

𝑉𝑉 ,       (24) 

где 𝑋𝑋  - входная последовательность размерности, и 𝑊𝑊𝑖𝑖
𝑄𝑄 ,𝑊𝑊𝑖𝑖

𝐾𝐾 ,𝑊𝑊𝑖𝑖
𝑉𝑉 - матрицы 

весов для формирования векторов запросов 𝑄𝑄𝑖𝑖, ключей 𝐾𝐾𝑖𝑖 и значений 𝑉𝑉𝑖𝑖 [17]. 

Выбор данной архитектуры обусловлен её способностью выделять 

информативные фрагменты временного окна и устойчиво работать при 

разнородных датчиках. 

 
Рис. 3. – Структура и процесс алгоритма трансформер 

Эти проекции формируют матрицы запросов (𝑄𝑄), ключей (𝐾𝐾) и значений 

(V). Матрица Q кодирует текущие сенсорные данные (ускорения, углы, ходы 
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подвески, скорости и т.д.), отражающие динамическое состояние автомобиля. 

Матрица K задаёт контекст временного окна и обеспечивает поиск 

релевантных зависимостей, тогда как матрица V хранит преобразованные 

признаки для восстановления целевых параметров. Механизм внимания 

вычисляет корреляции между Q и K, формируя уточнённые представления на 

основе V, которые далее используются для регрессии массы автомобиля, 

уклонов дороги и динамических состояний. Оценки внимания между 

оцениваемыми параметрами вычисляются по формуле [17]: 

𝐴𝐴𝑖𝑖 = 𝑄𝑄𝑖𝑖𝐾𝐾𝑖𝑖
𝑇𝑇

�𝑑𝑑ℎ
 ,          (25) 

где 𝑑𝑑ℎ - размерность соответствующего подпространства.  

На вход алгоритма подаются ускорения по трем осям, углы крена, 

тангажа и рыскания; четыре хода подвески; скорости колёс; 

тяговые/тормозные моменты; углы руления. Физические ограничения 

(например, декуплирование ориентации кузова и уклона по данным подвески) 

обеспечивают согласованность оценок при высокой динамике, такой как 

резкие изменения продольного и поперечного ускорений, дорожного уклона и 

угла крена автомобиля. 

Построение гибридной схемы оценки параметров движения автомобиля 

на основе энкодера трансформера и SR-UKF 

Преимуществом применения SR-UKF алгоритма является улучшение 

точности и стабильности оценивания, медленно меняющихся состояний 

объекта моделирования (масса, уклон). Однако представление неровностей 

поверхности движения в виде шума процесса движения автомобиля приводит 

к временным задержкам при частом проявлении неровностей. Нейросетевая 

модель на базе энкодера трансформера лучше аппроксимирует нелинейности 

и обеспечивает более высокое быстродействие по сравнению с фильтром SR-
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UKF. Однако в квазистационарных режимах такая модель может усиливать 

измерительный шум, что ухудшает качество оценивания. 

Для объединения достоинств обоих подходов предложена гибридная 

схема оценивания параметров движения транспортного средства на основе 

энкодера трансформера и SR-UKF, имеющая следующий вид: 
𝑥𝑥𝑘𝑘𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 𝛼𝛼𝑘𝑘𝑥𝑥𝑘𝑘𝑇𝑇𝑇𝑇 + (1 − 𝛼𝛼𝑘𝑘)𝑥𝑥𝑘𝑘𝑈𝑈𝑈𝑈𝑈𝑈 ,       (26) 

где 𝑥𝑥𝑘𝑘𝑇𝑇𝑇𝑇  - вектор состояния, оцененный нейросетевой моделью на базе 

энкодера трансформера, 𝑥𝑥𝑘𝑘𝑈𝑈𝑈𝑈𝑈𝑈  - вектор состояния, вычисленный с помощью 

SR-UKF.  

Механизм перекрёстного внимания использует текущий 30-мерный 

вектор измерений в качестве входа, а также информацию об остатках 

(разностях) между оценками, полученными SR-UKF и нейросетевой моделью, 

и эталонными значениями. Это позволяет по данным и по динамике остатков 

адаптивно перераспределять доверие к каждому оценивателю параметров 

транспортного средства. Явное использование остатков обеспечивает гибкий 

баланс между устойчивостью фильтра SR-UKF и быстродействием 

нейросетевой модели, повышая точность оценивания в переходных режимах 

и снижая влияние шума в квазистационарных режимах. Кроме того, такая 

схема делает процесс объединения оценок более интерпретируемым, 

поскольку вклад каждого оценивателя на каждом шаге вычислений можно 

отслеживать по весам внимания. 

Выход перекрёстного внимания задаётся выражением: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑄𝑄,𝐾𝐾,𝑉𝑉) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 � 𝑄𝑄𝐾𝐾𝑇𝑇

�𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚
� ,       (27) 

Обучение кросс-модельной сети для оценки параметров движения 

транспортного средства содержит следующие этапы: 

1. Крупная нейросетевая модель обучается на входных временных окнах 

длиной 512 шагов. На вход подаются остатки (разности) между оценками, 
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полученными SR-UKF и нейросетевой моделью, и эталонными значениями. 

Функция потерь задаётся выражением: 

ℒ𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑒𝑒𝑒𝑒 = 1
𝑁𝑁
∑ ||𝛼𝛼𝑘𝑘𝑥𝑥𝑘𝑘𝑇𝑇𝑇𝑇 + (1 − 𝛼𝛼𝑘𝑘)𝑥𝑥𝑘𝑘𝑈𝑈𝑈𝑈𝑈𝑈 − 𝑥𝑥𝑘𝑘||𝑁𝑁
𝑘𝑘=1

2 ,     (28) 

Задачей выполнения первого этапа обучения является получение 

оптимального веса сети 𝛼𝛼𝑘𝑘 , который обеспечивает согласование выходов 

переменных алгоритмов SR-UKF и нейросетевой моделью при различных 

дорожных условиях движения транспортного средства. При этом размер 

модели увеличивается для повышения способности к изучению сложных 

корреляций между остатками сигма-точечного фильтра Калмана и 

уверенностью оценивания параметров. 

2. Для ресурсно-ограничённых платформ выполняется перенос знаний 

от модели-преподавателя в компактную трёхслойную рекуррентную сеть типа 

долговременной краткосрочной памяти (по 512 скрытых единиц в слое). 

Поскольку модель-преподаватель использует остатки SR-UKF, которые 

недоступны при онлайн-работе, компактная сеть обучается воспроизводить 

выходы «преподавателя» без явного доступа к этим остаткам [18]. На вход 

подаётся 36-мерный вектор измерений, на выходе формируются веса 𝛼𝛼𝑘𝑘 . 

Функция потерь имеет вид: 

ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 1
𝑁𝑁
∑ ||𝛼𝛼𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑥𝑥𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + �1 − 𝛼𝛼𝑘𝑘𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆�𝑥𝑥𝑘𝑘𝑈𝑈𝑈𝑈𝑈𝑈 − 𝑥𝑥�𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑒𝑒𝑒𝑒||2𝑁𝑁
𝑘𝑘=1 ,  (29) 

Здесь 𝑥𝑥�𝑘𝑘𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑒𝑒𝑒𝑒 — слитый выход обученной модели-учителя. Такой подход 

сохраняет точность нейросетевой системы при существенном снижении 

вычислительной сложности вывода; ускорение обучения достигается за счёт 

использования смешанной точности вычислений. 

Моделирование оценки параметров движения транспортного средства 

Данные динамики автомобиля сгенерированы на платформе CarSim + 

MATLAB на протяжённых подъёмах/спусках, горных дорогах и городских 

маршрутах с частыми поворотами, что дало 500 000 образцов для обучения. 
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Рис. 4 показывает траекторию и продольные/поперечные ускорения, 

подтверждая высокую динамичность условий. 

 
Рис.  4. Траектория имитационного испытания; продольные и поперечные 

ускорения на всём тестовом наборе. 

Результаты моделирования при работе SR-UKF в офлайн-режиме 

представлены на рис. 5–7. Результаты моделирования показывают, что в 

установившихся (стационарных) режимах движения автомобиля ошибка 

оценки массы не превышает ±50 кг. В переходных режимах ошибка может 

достигать 200 кг при интенсивном разгоне и пробуксовке, большие 

перемещения подвески ухудшают оценку уклонов. Оценка поперечного 

уклона запаздывает и ослабляется из-за нелинейных эффектов крена и 

скольжения. 

 
Рис.  5. – Сравнение оценки массы автомобиля с эталонными значениями. 

 
Рис. 6. – Сравнение оценки продольного уклона дороги с эталонными 

значениями 
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Рис. 7. – Сравнение оценки поперечного уклона дороги с эталонными 

значениями 

Далее используются обозначения, принятые в тексте: вариант A - модель 

на базе энкодера трансформера (на рисунках: TransEnc), вариант B - 

рекуррентная модель с механизмом внимания (на рисунках: LSTM-Attn), 

вариант C - модель с механизмом перекрёстного внимания (на рисунках: 

CrossAttn). Моделирование показало, что среднеквадратичная ошибка оценки 

продольного уклона не превышает 0,02 рад, а поперечного уклона находится 

в диапазоне 0,01–0,02 рад. Среди рассмотренных нейросетевых вариантов 

наилучший результат обеспечивает модель с введёнными физическими 

ограничениями: среднеквадратичная ошибка не превышает 0,015 рад. 

 
Рис.  8. – Сравнение оценки продольного уклона дороги с использованием 

различных алгоритмов глубокого обучения. 
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Рис.  9. – Сравнение оценки поперечного уклона дороги на основе различных 

моделей глубокого обучения. 

Сравнение (рис. 10) показывает, что варианты A и B точнее отслеживают 

эталонные кривые, однако более чувствительны к измерительному шуму. 

Вариант C формирует более сглаженную оценку с небольшой задержкой, 

подавляя высокочастотные колебания и тем самым повышая устойчивость 

результата. По функции накопленного распределения ошибок (рис. 11а) 

видно, что для вариантов A и B в большинстве случаев модуль ошибки ниже 

0,01 рад, тогда как для варианта C характерный уровень составляет около 0,015 

рад. Точечные диаграммы (рис. 11b) подтверждают меньший разброс у 

варианта A; при этом ошибки варианта C остаются в пределах 0,02 рад. 

Среднеквадратичная ошибка равна 0,008 рад (вариант A), 0,010 рад (вариант 

B) и 0,013 рад (вариант C). Несмотря на меньшую точность, вариант C 

обеспечивает более устойчивую и согласованную оценку параметров 

движения. 

 
Рис.  10. – Сравнение предложенного алгоритма слияния и отдельных 

методов глубокого обучения. 
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Рис. 2. – (a) Сравнение функций накопленного распределения (CDF) для 

оценки поперечного уклона дороги разными алгоритмами; (b) сравнение по 

точечным диаграммам для тех же алгоритмов. 

 
Рис.  3. – Поперечный уклон: гистограммы, scatter, CDF по алгоритмам. 

 Помимо среднеквадратичной ошибки для движущихся объектов 

принципиально важна оценка в «худшем случае», поскольку редкие пиковые 

отклонения могут приводить к критическим режимам движения. В качестве 

такой оценки используется максимальная абсолютная ошибка, то есть 

наибольшее по времени абсолютное отклонение оценки от эталонного 

значения на интервале наблюдения [0, T]. Этот показатель характеризует 

наиболее неблагоприятный момент, тогда как среднеквадратичная ошибка 

отражает усреднённое качество. 

 Для оценки массы автомобиля (при исключении интервала начальной 

сходимости в первые две секунды) максимальная абсолютная ошибка в 

переходных режимах достигает порядка 200 кг, тогда как в стационарных 

режимах отклонение удерживается в пределах 50 кг. Для продольного уклона 

наблюдаются пиковые отклонения до 0,10 рад, а при исключении начального 

участка характерный максимум снижается примерно до 0,06 рад. Для 
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поперечного уклона среднеквадратичная ошибка составляет 0,008 рад 

(вариант A), 0,010 рад (вариант B) и 0,013 рад (вариант C), а максимальная 

абсолютная ошибка равна 0,015 рад, 0,017 рад и 0,020 рад соответственно. 

Наибольшие отклонения проявляются в переходных режимах, поэтому 

дальнейшая работа будет направлена на их снижение за счёт повышения 

робастности в динамических режимах, адаптивной настройки ковариаций 

шумов и расширения обучающей выборки сценариями с резкими 

изменениями ускорений и уклонов. 

Предложенная объединяющая схема динамически перераспределяет 

веса между нейросетевой моделью и алгоритмом SR-UKF (рис. 13). Вес, 

соответствующий оценке массы, в большинстве режимов близок к единице, 

что указывает на доминирование нейросетевой оценки. Для продольного и 

поперечного уклонов веса, как правило, удерживаются на уровне 0,7–0,9. 

Резкие изменения весов совпадают с переходными режимами движения и 

отражают смену динамики объекта управления. 

 
Рис.  4. – Веса слияния для каждой переменной во времени. 

 
Рис.  5.  – Тепловая карта распределения внимания во времени. 
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Тепловая карта распределения внимания предложенной модели 

приведена на рис. 14. По вертикальной оси показано распределение внимания 

между различными компонентами входной информации, по горизонтальной 

— время. Модель устойчиво сохраняет вклад остаточных компонент, а 

всплески внимания совпадают с динамическими переходами. Это означает, 

что сеть выделяет критические участки траектории, на которых изменяются 

параметры движения (например, при резких изменениях крена или 

ускорений), и перераспределяет веса в пользу наиболее информативных 

признаков. Таким образом, механизм внимания повышает 

интерпретируемость процесса объединения оценок и способствует более 

точному восстановлению параметров (уклоны, масса, ускорения) именно в 

переходных режимах, где традиционные методы демонстрируют наибольшие 

ошибки. 

Заключение  

Представлена гибридная схема оценки состояния автомобиля, 

объединяющая адаптивный алгоритм SR-UKF и нейросетевую модель с 

физическими ограничениями на основе энкодера трансформера. 

Предложенный подход обеспечивает высокоточную оценку массы и уклонов 

дороги, сочетая интерпретируемость фильтрационных методов и гибкость 

нейросетевого моделирования как в стационарных, так и в динамических 

режимах движения. 

Для компенсации запаздывания SR-UKF и снижения чувствительности 

нейросетевой оценки к шуму используется механизм внимания, который 

объединяет выходы обоих оценивателей и обучает временные веса их вклада. 

Это повышает точность и робастность оценивания параметров движения 

транспортного средства. Для ресурсно-ограничённых платформ применяется 

перенос знаний: поведение крупной модели-преподавателя переносится в 

компактную рекуррентную модель типа долговременной краткосрочной 
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памяти, что заметно снижает вычислительные затраты при минимальной 

потере точности. Несмотря на несколько худшую точность в переходных 

режимах по сравнению с чисто нейросетевыми решениями, преимущества по 

интерпретируемости, устойчивости и пригодности к встраиванию делают 

предложенный подход практичным для реальных автомобильных систем. 

В дальнейшем планируется расширение входных данных за счёт 

лидарных и видеодатчиков для прогнозирования изменений дорожных 

условий и последующей совместной оптимизации управления транспортным 

средством с целью повышения безопасности и комфорта пассажиров [19]. 
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