×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

Method for simulating the impulse response of a horizontally layered hydro-acoustic waveguide with a liquid bottom

Abstract

Method for simulating the impulse response of a horizontally layered hydro-acoustic waveguide with a liquid bottom

Lisyutin V.A., Lastovenko O.R, Dovgalenko V.V., Luchin V.L., Petrenko N.V.

Incoming article date: 13.01.2020

A hydroacoustic waveguide is considered as a linear system with parameters distributed over dis-tance. A method is proposed for modeling the impulse response of a waveguide. The fields of indi-vidual normal modes at fixed frequencies are calculated so that discretization theorems are satisfied. By performing the inverse Fourier transform of the fields of all modes separately, the time realiza-tions are restored. Then, summing the mode fields, the impulse response of the waveguide is calcu-lated. This approach allows you to "turn off" the fields of individual modes, add, if necessary, the fields of higher modes, or to study all fields separately, simulating the operation of mode selection. The impulse response is considered as a tool for solving the problems of inverting the acoustic characteristics of the seabed and modeling the propagation of signals in waveguides. The impulse response of the first mode of the Pekeris waveguide with the bottom in the form of an intermediate layer and half-space is restored, its wave attributes are revealed: ground wave, water wave, Airy wave. The frequency dependences of the group velocity of normal modes and the multimode im-pulse response are restored. Low-pass filtering of the impulse response makes it possible to reveal the Airy phase of the first mode.

Keywords: normal modes, seabed, attenuation coefficient, group velocity, impulse response, intramode dispersion, intermode dispersion