The influence of the variability of the deformation characteristics of concrete on the load-bearing capacity of bent reinforced concrete elements at low temperatures
Abstract
The influence of the variability of the deformation characteristics of concrete on the load-bearing capacity of bent reinforced concrete elements at low temperatures
Incoming article date: 11.09.2025Reinforced concrete structures (RCS) operating under the natural conditions of the Far North are subjected to alternating freezing and thawing. The impact of freezing–thawing cycles (FTC) leads to the degradation not only of the strength but also of the deformation properties (DP) of concrete. In the current design standards for RCS, the DP of concrete and reinforcement are specified as average statistical values. This study investigates the influence of the variability of concrete’s deformation properties on the reliability of the load-bearing capacity of flexural reinforced concrete elements before and after exposure to FTC. It was shown that considering the variability of concrete’s deformation characteristics at reinforcement ratios up to 1% under alternating temperature conditions has practically no effect on the load-bearing capacity, while at reinforcement ratios close to the limiting values it leads to its reduction. In addition, recommendations were provided for the design of flexural reinforced concrete elements under alternating temperature conditions.
Keywords: freeze-thaw cycle, statistical regularities of resistance, flexure, reinforced concrete, ultimate deformation of concrete, assurance