Sybil Attack Protection Without Cryptographic Key Distribution
Abstract
Sybil Attack Protection Without Cryptographic Key Distribution
Incoming article date: 12.08.2025The relevance of this article stems from the need to develop lightweight and scalable solutions for decentralized systems (blockchain, IoT), where traditional cryptographic methods are inefficient or excessive. A theoretical-practical method for protecting unmanned transportation systems against Sybil attacks has been developed, based on a server robot’s analysis of each client robot’s unique directional electromagnetic signal power map signature. Experimental solutions for Sybil attack protection are demonstrated using two aerial servers deployed on quadcopters. The proposed keyless Sybil attack defense method utilizes WiFi signal parameter analysis (e.g., power scattering and variable antenna radiation patterns) to detect spoofed client robots. Experiments confirm that monitoring unique radio channel characteristics effectively limits signature forgery. This physical-layer approach is also applicable to detecting packet injection in robot Wi-Fi networks. The key advantages of the developed method include the elimination of cryptography, reducing computational overhead; the use of physical signal parameters as a "fingerprint" for legitimate devices; and the method's scalability to counter other threats, such as traffic injection.
Keywords: protection against Sybil attacks, unmanned vehicle systems, electromagnetic signal power map, WiFi signal, signature falsification, spoofing, and synthetic aperture radar