×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

  • Numerical modeling of the stress-strain state of compressed reinforced concrete pillars reinforced with composite materials

    Currently, a large amount of research is devoted to the use of polymer composite materials applied for increasing the strength and durability of reinforced concrete elements. In compressed reinforced concrete columns, the bearing capacity depends on the eccentricity of the external force application and the corresponding stress-strain state, as well as on the arrangement and quantity of composite materials bonded to the surface of the structure. The choice of the arrangement scheme of composite materials depending on the stress state of the structure is of current interest for researchers. At the same time, studies conducted on centrally compressed elements often have contradictory effects. The main purpose of this study is to perform numerical experiment of a digital model for the centrally compressed concrete column reinforced with composite materials. The calculation results for 3 short columns with different reinforcement schemes are presented. It is shown that the use of composite materials to reinforce structures increases the bearing capacity up to 10%. Based on the study results, recommendations on the optimal schemes of reinforcement with composite clamps of inflexible columns reinforced in the transverse direction are proposed.

    Keywords: reinforced concrete columns, normal sections, finite element modeling, reinforcement with composite materials