You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.


+7 961 270-60-01

  • Investigation of the accordion effect of corrugated steel beams

    Assessment of flexural strength is important in the design of steel beams. In this paper, analytical studies have been carried out to determine the flexural strength of conventional steel I-beams and steel corrugated beams. An experimental program was analyzed for four beams with a simple support and different web configurations (flat or corrugated) and different flange thicknesses (thin or thick). In the course of experimental work, the effect of a decrease in the bending capacity of a beam due to a corrugated web was determined. To simulate the tested samples and check the results of the experimental part of the work, a nonlinear finite element technique was used. After receiving the results, the following conclusions were made. First, the bending capacity of the corrugated steel beam is less than that of the conventional steel I-beam, in the range of 10 to 20%. Second, the flexure of the flat-web steel beam showed local buckling of the flange followed by local buckling of the web, in contrast to the steel girder with a corrugated web, which previously showed only local buckling of the flange. And third, the finite element model can simulate the behavior of steel beams, especially in the elastic stage, with an acceptable degree of accuracy.

    Keywords: steel beam design, flexural strength, corrugated web, flange thickness, bending capacity, finite element technique, web configuration

  • Optimization sizes of steel vertical tank

    Storage of volatile and flammable liquids is carried out, as a rule, in vertical steel tanks. In total storage, they make up more than 80%. That is why research in this area is important in industry. The issue of reducing the cost of manufacturing tanks and reducing material costs during construction is extremely relevant. Based on the dependences of the optimal diameter, height and mass of the hull on the volume of the vessel, calculations were made for the existing TVS-10.000. In this paper, we considered a method for optimizing the size of a tank from the condition of minimum material consumption of the housing.The main dependencies and formulas were derived, on the basis of which the calculation was performed. When making calculations, the effect of static load was taken into account without the influence of dynamic factors. Thus, there was a decrease in material costs by about half for the cylindrical wall, cover and bottom.

    Keywords: vertical steel tank, important in industry, reducing manufacturing costs, reducing material costs, optimizing sizes, method of optimizing sizes, minimal material consumption