An algorithm for circuit analysis of memristor robustness for use in artificial intelligence devices under conditions of interval uncertainty of parameters
Abstract
An algorithm for circuit analysis of memristor robustness for use in artificial intelligence devices under conditions of interval uncertainty of parameters
Incoming article date: 25.10.2025The article discusses the issues of assessing the robustness of memristor elements in order to increase the reliability of artificial intelligence systems based on nanoelectronic structures. The system of nonlinear equations describing the frequency response of a memristor, the input signals of which can strongly depend on various parameters, cannot be solved using methods accessible to standard mathematics.
To achieve the result, it is proposed that the system of equations be solved using interval arithmetic methods. The value of intermediate solutions lies in the fact that they provide access to the most reliable solutions to basic problems, taking into account possible changes in the initial and calculated values.
The main task of interval computing is to replace arithmetic operations and real functions on real numbers with interval operations and functions that transform intervals containing these numbers. In interval calculation, the main object of research is the interval, which is a closed numerical interval. The value of interval calculations lies in the fact that they contain accurate solutions to the initial problems. The interval calculation methods developed to date are based on the use of arithmetic operations with real and complex numbers.
Using interval calculation can help reduce errors in calculations and data storage in electronic devices. For example, when using memristors to store information, interval calculation can help account for factors affecting data read and write errors. Interval arithmetic allows you to take into account possible errors and uncertainties that may arise during measurements and calculations. This helps to reduce the likelihood of errors and increase the accuracy of forecasting the operation of memristors.
The proposed algorithm for estimating the robustness of a memristor in the mode, which takes into account significant increases in the nonlinearities of electrical parameters from the point of view of reliability, makes it possible to calculate the characteristics of the developed circuits and reduce the time spent on circuit engineering when searching for the best option.Keywords: memristor, multipole, topological graph, finite increments, structural-parametric model, algorithm