×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

  • Research on Kalman Filtering Method Fusion Based on Deep Learning

    This article analyzes the limitations of the standalone use of Kalman filters in complex dynamic systems and systematizes modern advances in the integration of deep learning methods. Practical aspects of the combined application of deep learning and Kalman filters are explored, demonstrating improved accuracy and reliability of solutions under dynamic conditions, noisy environments, and complex environmental factors. Finally, promising directions for the development of multisensor data fusion methods are outlined.

    Keywords: deep learning, integrated navigation, multi-source data fusion, Kalman filter, extended Kalman filter

  • Local Atomic and Electronic Structure of the Fe dopants in AlN:Fe Nanorods

    Fe-doped AlN nanorods were studied by means of x-ray absorption spectroscopy above the Fe K- and L2,3- edges. Theoretical simulations of the x-ray absorption spectra show that Fe atoms mainly substitute Al. A minor fraction of Fe interstitials or Fe-Al-N ternary alloy can be identified as well. Bader’s AIM analysis predicts that neutral substitutional FeAl defect is in 2+ charge state, though Al in pure AlN is in 3+ charge state.  Fe L2,3 absorption spectra and photoluminescence data indicate the coexistence of Fe2+/Fe3+ in AlN:Fe nanorods so different charge states of substitutional FeAl should co-exist.

    Keywords: diversification of management, production diversification, financial and economic purposes of a diversification, technological purposes of ensuring flexibility of production

  • Structure analysis of carbon nanotubes by electron microscopy and electron diffraction

    In this work we have investigated the structure of individual single-walled and multi-walled carbon nanotubes by high-resolution electron microscopy and electron diffraction. To grow carbon nanotubes we used a catalytic chemical vapor deposition method. It was shown, that this synthesis protocol gave in general single-walled and double-walled carbon nanotubes with a high level of crystallinity. The diameters of the nanotubes were in the range 1.5 - 7 nm. We also observed that there was a certain level of amorphous carbon deposited on the nanotube surface during the growth. In this work we also present the structure analysis of the double-walled carbon nanotube by means of electron diffraction. We show that the structural date derived from electron microscopy and electron diffraction agree within the experimental error.

    Keywords: Carbon nanotubes, electron diffraction, electron microscopy

  • Improving the accuracy of extrinsic camera parameters calibration

    The model of the ideal video camera is described, the form of the intrinsic and extrinsic camera parameters is showed. The relations between coordinates of a point in the world coordinate system with coordinates of this point on the image plane are given. The problem of finding extrinsic camera parameters from corresponded world and image points is posed. The error of found extrinsic parameters is estimated by simulation for several configurations of calibration objects consisting of a variable number of points on different distances from the camera and with different angles between them. On the basis of simulation results recommendations are given for the choice of the calibration object in order to improve the accuracy of the extrinsic camera parameters. The best results may be obtained with a configuration consisting of points that have a large angular distance between them and are posed on different distance from camera.

    Keywords: camera calibration, extrinsic camera parameters, position and orientation estimation, calibration object

  • Methods for the synthesis of LaMnO3 (Review)

    "This review covers various methods of synthesis LaMnO3 ferroics. The general analysis of the solid-phase synthesis reactions methods and wet methods (sol-gel, sorption, co-precipitation) are carred out. The original results of LaMnO3 syntheses from various precursors by means of the in situ method are showned. The advantages and disadvantages of different methods of synthesis are determined. The analysis of synthesis LaMnO3 ferroics published data is shown:
    - the structure formation of LaMnO3 in perovskite-type phases occurs at different temperatures, depending on precursors states;
    - LaMnO3 perovskite phases differ in symmetry and unit cells parameters at room temperature, depending on the preparation conditions;
    - the highest synthesis temperature of LaMnO3 are typical for solid phase reactions method (950-1050 ° C), the lowest - for wet synthesis methods (500-700 ° C);
     - the synthesis conditions effect the stoichiometry of LaMnO3 for oxygen content.
    Our studies of structure formation processes of LaMnO3 by in situ method are allowed to define the role of precursors states at synthesis of solid phase reactions methods, adsorption, co-precipitation and sol-gel mixtures.
    It is determined that in samples prepared by wet chemical methods, the formation processes of  LaMnO3 perovskite phases occur at lower temperatures than by solid phase reaction (sol-gel precursor - 500 <T <600 ° C; precursors obtained by coprecipitation and sorption methods - at 600 <T <700 ° C and 700 <T <800 ° C, respectively).  

    Keywords: ferroics, LaMnO3, X-ray diffraction, solid-phase synthesis, sol-gel synthesis, sorption, co-precipitation