It is indicated in the article that the study of the electron bunching process in the drift space of a transit klystron is an urgent task that allows one to establish general laws applicable to more complex models. In this connection, the behavior of the pre-modulated electron beam in the drift space of the transit klystron has been investigated. A numerical model has been implemented that takes into account the effect of space charge fields and the interaction of charged particles with elements of an electrodynamic system. A series of numerical experiments with different values of the current and initial velocities of electrons, as well as their comparison with theoretical data, have been carried out. As a result of numerical experiments, data were obtained that characterize the dynamics of the electron flux in the drift space of the transit klystron at different values of the initial velocity (0.5 s, 0.9 s) and cathode current (10 mA, 1A, 10A).
Keywords: flyby klystron, mathematical model, numerical simulation, large particle method, particle-particle method, drift space, convection current distribution, electron flow, multithreaded calculations, system of differential equations
The article presents a detailed analysis of the structure of the model of management of the hematopoietic functional system of the body in various physiological situations, which activates the activity of a certain adaptive circuit that characterizes the functional state. The first state and adaptation to the contour of the functional hematopoietic system of the body included in the work are considered in detail. The structural equation of adaptation of the first contour is made. It is concluded that the equation of adaptation compiled for a hypothetical control model adaptation, in the actual state of Affairs raises a number of inconsistencies with the hypothetical implementation-related deviations from the ideal parameters of functioning: autonomic nervous system, internal environment, metabolic state, the processes of transmitting the control actions. All these deviations affect the observed realization of the set of blood form elements (RSBE).
Keywords: physiological model of functional hematopoietic system, the adaptive circuit, the space of external influences, categorical diagram, adaptation processes, gemondo-nuclear level, functino mapping, homomorphic mapping, the equation of adaptation